fast-reid/fastreid/modeling/heads/embedding_head.py

98 lines
3.9 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import torch.nn.functional as F
from torch import nn
from fastreid.layers import *
from fastreid.utils.weight_init import weights_init_kaiming, weights_init_classifier
from .build import REID_HEADS_REGISTRY
@REID_HEADS_REGISTRY.register()
class EmbeddingHead(nn.Module):
def __init__(self, cfg):
super().__init__()
# fmt: off
feat_dim = cfg.MODEL.BACKBONE.FEAT_DIM
embedding_dim = cfg.MODEL.HEADS.EMBEDDING_DIM
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
neck_feat = cfg.MODEL.HEADS.NECK_FEAT
pool_type = cfg.MODEL.HEADS.POOL_LAYER
cls_type = cfg.MODEL.HEADS.CLS_LAYER
with_bnneck = cfg.MODEL.HEADS.WITH_BNNECK
norm_type = cfg.MODEL.HEADS.NORM
if pool_type == 'fastavgpool': self.pool_layer = FastGlobalAvgPool2d()
elif pool_type == 'avgpool': self.pool_layer = nn.AdaptiveAvgPool2d(1)
elif pool_type == 'maxpool': self.pool_layer = nn.AdaptiveMaxPool2d(1)
elif pool_type == 'gempoolP': self.pool_layer = GeneralizedMeanPoolingP()
elif pool_type == 'gempool': self.pool_layer = GeneralizedMeanPooling()
elif pool_type == "avgmaxpool": self.pool_layer = AdaptiveAvgMaxPool2d()
elif pool_type == 'clipavgpool': self.pool_layer = ClipGlobalAvgPool2d()
elif pool_type == "identity": self.pool_layer = nn.Identity()
elif pool_type == "flatten": self.pool_layer = Flatten()
else: raise KeyError(f"{pool_type} is not supported!")
# fmt: on
self.neck_feat = neck_feat
bottleneck = []
if embedding_dim > 0:
bottleneck.append(nn.Conv2d(feat_dim, embedding_dim, 1, 1, bias=False))
feat_dim = embedding_dim
if with_bnneck:
bottleneck.append(get_norm(norm_type, feat_dim, bias_freeze=True))
self.bottleneck = nn.Sequential(*bottleneck)
# classification layer
# fmt: off
if cls_type == 'linear': self.classifier = nn.Linear(feat_dim, num_classes, bias=False)
elif cls_type == 'arcSoftmax': self.classifier = ArcSoftmax(cfg, feat_dim, num_classes)
elif cls_type == 'circleSoftmax': self.classifier = CircleSoftmax(cfg, feat_dim, num_classes)
elif cls_type == 'cosSoftmax': self.classifier = CosSoftmax(cfg, feat_dim, num_classes)
else: raise KeyError(f"{cls_type} is not supported!")
# fmt: on
self.bottleneck.apply(weights_init_kaiming)
self.classifier.apply(weights_init_classifier)
def forward(self, features, targets=None):
"""
See :class:`ReIDHeads.forward`.
"""
global_feat = self.pool_layer(features)
bn_feat = self.bottleneck(global_feat)
bn_feat = bn_feat[..., 0, 0]
# Evaluation
# fmt: off
if not self.training: return bn_feat
# fmt: on
# Training
if self.classifier.__class__.__name__ == 'Linear':
cls_outputs = self.classifier(bn_feat)
pred_class_logits = F.linear(bn_feat, self.classifier.weight)
else:
cls_outputs = self.classifier(bn_feat, targets)
pred_class_logits = self.classifier.s * F.linear(F.normalize(bn_feat),
F.normalize(self.classifier.weight))
# fmt: off
if self.neck_feat == "before": feat = global_feat[..., 0, 0]
elif self.neck_feat == "after": feat = bn_feat
else: raise KeyError(f"{self.neck_feat} is invalid for MODEL.HEADS.NECK_FEAT")
# fmt: on
return {
"cls_outputs": cls_outputs,
"pred_class_logits": pred_class_logits,
"features": feat,
}