fast-reid/fastreid/modeling/losses/circle_loss.py

53 lines
1.5 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import torch
import torch.nn.functional as F
from torch import nn
from fastreid.utils import comm
from .utils import concat_all_gather
def circle_loss(
embedding: torch.Tensor,
targets: torch.Tensor,
margin: float,
alpha: float,) -> torch.Tensor:
embedding = nn.functional.normalize(embedding, dim=1)
if comm.get_world_size() > 1:
all_embedding = concat_all_gather(embedding)
all_targets = concat_all_gather(targets)
else:
all_embedding = embedding
all_targets = targets
dist_mat = torch.matmul(all_embedding, all_embedding.t())
N = dist_mat.size(0)
is_pos = all_targets.view(N, 1).expand(N, N).eq(all_targets.view(N, 1).expand(N, N).t()).float()
# Compute the mask which ignores the relevance score of the query to itself
is_pos = is_pos - torch.eye(N, N, device=is_pos.device)
is_neg = all_targets.view(N, 1).expand(N, N).ne(all_targets.view(N, 1).expand(N, N).t())
s_p = dist_mat * is_pos
s_n = dist_mat * is_neg
alpha_p = torch.clamp_min(-s_p.detach() + 1 + margin, min=0.)
alpha_n = torch.clamp_min(s_n.detach() + margin, min=0.)
delta_p = 1 - margin
delta_n = margin
logit_p = - alpha * alpha_p * (s_p - delta_p)
logit_n = alpha * alpha_n * (s_n - delta_n)
loss = nn.functional.softplus(torch.logsumexp(logit_p, dim=1) + torch.logsumexp(logit_n, dim=1)).mean()
return loss