fast-reid/fastreid/modeling/backbones/shufflenet.py

204 lines
6.9 KiB
Python

"""
Author: Guan'an Wang
Contact: guan.wang0706@gmail.com
"""
import torch
from torch import nn
from collections import OrderedDict
import logging
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from fastreid.layers import get_norm
from fastreid.modeling.backbones import BACKBONE_REGISTRY
logger = logging.getLogger(__name__)
class ShuffleV2Block(nn.Module):
"""
Reference:
https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2
"""
def __init__(self, bn_norm, inp, oup, mid_channels, *, ksize, stride):
super(ShuffleV2Block, self).__init__()
self.stride = stride
assert stride in [1, 2]
self.mid_channels = mid_channels
self.ksize = ksize
pad = ksize // 2
self.pad = pad
self.inp = inp
outputs = oup - inp
branch_main = [
# pw
nn.Conv2d(inp, mid_channels, 1, 1, 0, bias=False),
get_norm(bn_norm, mid_channels),
nn.ReLU(inplace=True),
# dw
nn.Conv2d(mid_channels, mid_channels, ksize, stride, pad, groups=mid_channels, bias=False),
get_norm(bn_norm, mid_channels),
# pw-linear
nn.Conv2d(mid_channels, outputs, 1, 1, 0, bias=False),
get_norm(bn_norm, outputs),
nn.ReLU(inplace=True),
]
self.branch_main = nn.Sequential(*branch_main)
if stride == 2:
branch_proj = [
# dw
nn.Conv2d(inp, inp, ksize, stride, pad, groups=inp, bias=False),
get_norm(bn_norm, inp),
# pw-linear
nn.Conv2d(inp, inp, 1, 1, 0, bias=False),
get_norm(bn_norm, inp),
nn.ReLU(inplace=True),
]
self.branch_proj = nn.Sequential(*branch_proj)
else:
self.branch_proj = None
def forward(self, old_x):
if self.stride == 1:
x_proj, x = self.channel_shuffle(old_x)
return torch.cat((x_proj, self.branch_main(x)), 1)
elif self.stride == 2:
x_proj = old_x
x = old_x
return torch.cat((self.branch_proj(x_proj), self.branch_main(x)), 1)
def channel_shuffle(self, x):
batchsize, num_channels, height, width = x.data.size()
assert (num_channels % 4 == 0)
x = x.reshape(batchsize * num_channels // 2, 2, height * width)
x = x.permute(1, 0, 2)
x = x.reshape(2, -1, num_channels // 2, height, width)
return x[0], x[1]
class ShuffleNetV2(nn.Module):
"""
Reference:
https://github.com/megvii-model/ShuffleNet-Series/tree/master/ShuffleNetV2
"""
def __init__(self, bn_norm, model_size='1.5x'):
super(ShuffleNetV2, self).__init__()
self.stage_repeats = [4, 8, 4]
self.model_size = model_size
if model_size == '0.5x':
self.stage_out_channels = [-1, 24, 48, 96, 192, 1024]
elif model_size == '1.0x':
self.stage_out_channels = [-1, 24, 116, 232, 464, 1024]
elif model_size == '1.5x':
self.stage_out_channels = [-1, 24, 176, 352, 704, 1024]
elif model_size == '2.0x':
self.stage_out_channels = [-1, 24, 244, 488, 976, 2048]
else:
raise NotImplementedError
# building first layer
input_channel = self.stage_out_channels[1]
self.first_conv = nn.Sequential(
nn.Conv2d(3, input_channel, 3, 2, 1, bias=False),
get_norm(bn_norm, input_channel),
nn.ReLU(inplace=True),
)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.features = []
for idxstage in range(len(self.stage_repeats)):
numrepeat = self.stage_repeats[idxstage]
output_channel = self.stage_out_channels[idxstage + 2]
for i in range(numrepeat):
if i == 0:
self.features.append(ShuffleV2Block(bn_norm, input_channel, output_channel,
mid_channels=output_channel // 2, ksize=3, stride=2))
else:
self.features.append(ShuffleV2Block(bn_norm, input_channel // 2, output_channel,
mid_channels=output_channel // 2, ksize=3, stride=1))
input_channel = output_channel
self.features = nn.Sequential(*self.features)
self.conv_last = nn.Sequential(
nn.Conv2d(input_channel, self.stage_out_channels[-1], 1, 1, 0, bias=False),
get_norm(bn_norm, self.stage_out_channels[-1]),
nn.ReLU(inplace=True)
)
self._initialize_weights()
def forward(self, x):
x = self.first_conv(x)
x = self.maxpool(x)
x = self.features(x)
x = self.conv_last(x)
return x
def _initialize_weights(self):
for name, m in self.named_modules():
if isinstance(m, nn.Conv2d):
if 'first' in name:
nn.init.normal_(m.weight, 0, 0.01)
else:
nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0001)
nn.init.constant_(m.running_mean, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0001)
nn.init.constant_(m.running_mean, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
@BACKBONE_REGISTRY.register()
def build_shufflenetv2_backbone(cfg):
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
bn_norm = cfg.MODEL.BACKBONE.NORM
model_size = cfg.MODEL.BACKBONE.DEPTH
# fmt: on
model = ShuffleNetV2(bn_norm, model_size=model_size)
if pretrain:
new_state_dict = OrderedDict()
state_dict = torch.load(pretrain_path)["state_dict"]
for k, v in state_dict.items():
if k[:7] == 'module.':
k = k[7:]
new_state_dict[k] = v
incompatible = model.load_state_dict(new_state_dict, strict=False)
if incompatible.missing_keys:
logger.info(
get_missing_parameters_message(incompatible.missing_keys)
)
if incompatible.unexpected_keys:
logger.info(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
return model