fast-reid/projects/StrongBaseline/README.md

1.1 KiB

Strong Baseline in FastReID

Training

To train a model, run

CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yaml>

For example, to launch a end-to-end baseline training on market1501 dataset with ibn-net on 4 GPUs, one should excute:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_net.py --config-file='configs/baseline_ibn_market1501.yml'

Experimental Results

Market1501 dataset

Method Pretrained Rank@1 mAP
BagTricks ImageNet 93.3% 85.2%
BagTricks + Ibn-a ImageNet 94.9% 87.1%
BagTricks + Ibn-a + softMargin ImageNet 94.8% 87.7%

DukeMTMC dataset

Method Pretrained Rank@1 mAP
BagTricks ImageNet 86.6% 77.3%
BagTricks + Ibn-a ImageNet 88.8% 78.6%
BagTricks + Ibn-a + softMargin ImageNet 89.1% 78.9%

MSMT17 dataset

Method Pretrained Rank@1 mAP
BagTricks ImageNet 72.0% 48.6%
BagTricks + Ibn-a ImageNet 77.7% 54.6%
BagTricks + Ibn-a + softMargin ImageNet 77.3% 55.7%