fast-reid/projects/FastAttr/train_net.py

126 lines
3.8 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import logging
import sys
sys.path.append('.')
from fastreid.config import get_cfg
from fastreid.engine import DefaultTrainer
from fastreid.engine import default_argument_parser, default_setup, launch
from fastreid.utils.checkpoint import Checkpointer
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.build import _root, build_reid_train_loader, build_reid_test_loader
from fastreid.data.transforms import build_transforms
from fastreid.utils import comm
from fastattr import *
class AttrTrainer(DefaultTrainer):
sample_weights = None
@classmethod
def build_model(cls, cfg):
"""
Returns:
torch.nn.Module:
It now calls :func:`fastreid.modeling.build_model`.
Overwrite it if you'd like a different model.
"""
model = DefaultTrainer.build_model(cfg)
if cfg.MODEL.LOSSES.BCE.WEIGHT_ENABLED and \
AttrTrainer.sample_weights is not None:
setattr(model, "sample_weights", AttrTrainer.sample_weights.to(model.device))
else:
setattr(model, "sample_weights", None)
return model
@classmethod
def build_train_loader(cls, cfg):
logger = logging.getLogger("fastreid.attr_dataset")
train_items = list()
attr_dict = None
for d in cfg.DATASETS.NAMES:
dataset = DATASET_REGISTRY.get(d)(root=_root, combineall=cfg.DATASETS.COMBINEALL)
if comm.is_main_process():
dataset.show_train()
if attr_dict is not None:
assert attr_dict == dataset.attr_dict, f"attr_dict in {d} does not match with previous ones"
else:
attr_dict = dataset.attr_dict
train_items.extend(dataset.train)
train_transforms = build_transforms(cfg, is_train=True)
train_set = AttrDataset(train_items, train_transforms, attr_dict)
data_loader = build_reid_train_loader(cfg, train_set=train_set)
AttrTrainer.sample_weights = data_loader.dataset.sample_weights
return data_loader
@classmethod
def build_test_loader(cls, cfg, dataset_name):
dataset = DATASET_REGISTRY.get(dataset_name)(root=_root)
attr_dict = dataset.attr_dict
if comm.is_main_process():
dataset.show_test()
test_items = dataset.test
test_transforms = build_transforms(cfg, is_train=False)
test_set = AttrDataset(test_items, test_transforms, attr_dict)
data_loader, _ = build_reid_test_loader(cfg, test_set=test_set)
return data_loader
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
data_loader = cls.build_test_loader(cfg, dataset_name)
return data_loader, AttrEvaluator(cfg, output_folder)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_attr_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
cfg.defrost()
cfg.MODEL.BACKBONE.PRETRAIN = False
model = AttrTrainer.build_model(cfg)
Checkpointer(model).load(cfg.MODEL.WEIGHTS) # load trained model
res = AttrTrainer.test(cfg, model)
return res
trainer = AttrTrainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)