fast-reid/fastreid/modeling/backbones/resnext.py

199 lines
6.8 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: liaoxingyu5@jd.com
"""
# based on:
# https://github.com/XingangPan/IBN-Net/blob/master/models/imagenet/resnext_ibn_a.py
import math
import logging
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import torch
from ...layers import IBN
from .build import BACKBONE_REGISTRY
class Bottleneck(nn.Module):
"""
RexNeXt bottleneck type C
"""
expansion = 4
def __init__(self, inplanes, planes, with_ibn, baseWidth, cardinality, stride=1, downsample=None):
""" Constructor
Args:
inplanes: input channel dimensionality
planes: output channel dimensionality
baseWidth: base width.
cardinality: num of convolution groups.
stride: conv stride. Replaces pooling layer.
"""
super(Bottleneck, self).__init__()
D = int(math.floor(planes * (baseWidth / 64)))
C = cardinality
self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False)
if with_ibn:
self.bn1 = IBN(D * C)
else:
self.bn1 = nn.BatchNorm2d(D * C)
self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
self.bn2 = nn.BatchNorm2d(D * C)
self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
"""
ResNext optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1611.05431.pdf
"""
def __init__(self, last_stride, with_ibn, block, layers, baseWidth=4, cardinality=32):
""" Constructor
Args:
baseWidth: baseWidth for ResNeXt.
cardinality: number of convolution groups.
layers: config of layers, e.g., [3, 4, 6, 3]
num_classes: number of classes
"""
super(ResNeXt, self).__init__()
self.cardinality = cardinality
self.baseWidth = baseWidth
self.inplanes = 64
self.output_size = 64
self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], with_ibn=with_ibn)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, with_ibn=with_ibn)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, with_ibn=with_ibn)
self.layer4 = self._make_layer(block, 512, layers[3], stride=last_stride, with_ibn=with_ibn)
self.random_init()
def _make_layer(self, block, planes, blocks, stride=1, with_ibn=False):
""" Stack n bottleneck modules where n is inferred from the depth of the network.
Args:
block: block type used to construct ResNext
planes: number of output channels (need to multiply by block.expansion)
blocks: number of blocks to be built
stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
Returns: a Module consisting of n sequential bottlenecks.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
if planes == 512:
with_ibn = False
layers.append(block(self.inplanes, planes, with_ibn, self.baseWidth, self.cardinality, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, with_ibn, self.baseWidth, self.cardinality, 1, None))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def random_init(self):
self.conv1.weight.data.normal_(0, math.sqrt(2. / (7 * 7 * 64)))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.InstanceNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
@BACKBONE_REGISTRY.register()
def build_resnext_backbone(cfg):
"""
Create a ResNeXt instance from config.
Returns:
ResNeXt: a :class:`ResNeXt` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
with_se = cfg.MODEL.BACKBONE.WITH_SE
with_nl = cfg.MODEL.BACKBONE.WITH_NL
depth = cfg.MODEL.BACKBONE.DEPTH
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth]
nl_layers_per_stage = {50: [0, 2, 3, 0], 101: [0, 2, 3, 0]}[depth]
model = ResNeXt(last_stride, with_ibn, Bottleneck, num_blocks_per_stage)
if pretrain:
# if not with_ibn:
# original resnet
# state_dict = model_zoo.load_url(model_urls[depth])
# else:
# ibn resnet
state_dict = torch.load(pretrain_path)['state_dict']
# remove module in name
new_state_dict = {}
for k in state_dict:
new_k = '.'.join(k.split('.')[1:])
if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
new_state_dict[new_k] = state_dict[k]
state_dict = new_state_dict
res = model.load_state_dict(state_dict, strict=False)
logger = logging.getLogger(__name__)
logger.info('missing keys is {}'.format(res.missing_keys))
logger.info('unexpected keys is {}'.format(res.unexpected_keys))
return model