fast-reid/fastreid/modeling/backbones/resnext.py

338 lines
12 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
# based on:
# https://github.com/XingangPan/IBN-Net/blob/master/models/imagenet/resnext_ibn_a.py
import logging
import math
import torch
import torch.nn as nn
from fastreid.layers import *
from fastreid.utils import comm
from fastreid.utils.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message
from .build import BACKBONE_REGISTRY
logger = logging.getLogger(__name__)
model_urls = {
'ibn_101x': 'https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnext101_ibn_a-6ace051d.pth',
}
class Bottleneck(nn.Module):
"""
RexNeXt bottleneck type C
"""
expansion = 4
def __init__(self, inplanes, planes, bn_norm, num_splits, with_ibn, baseWidth, cardinality, stride=1,
downsample=None):
""" Constructor
Args:
inplanes: input channel dimensionality
planes: output channel dimensionality
baseWidth: base width.
cardinality: num of convolution groups.
stride: conv stride. Replaces pooling layer.
"""
super(Bottleneck, self).__init__()
D = int(math.floor(planes * (baseWidth / 64)))
C = cardinality
self.conv1 = nn.Conv2d(inplanes, D * C, kernel_size=1, stride=1, padding=0, bias=False)
if with_ibn:
self.bn1 = IBN(D * C, bn_norm, num_splits)
else:
self.bn1 = get_norm(bn_norm, D * C, num_splits)
self.conv2 = nn.Conv2d(D * C, D * C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
self.bn2 = get_norm(bn_norm, D * C, num_splits)
self.conv3 = nn.Conv2d(D * C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = get_norm(bn_norm, planes * 4, num_splits)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
"""
ResNext optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1611.05431.pdf
"""
def __init__(self, last_stride, bn_norm, num_splits, with_ibn, with_nl, block, layers, non_layers,
baseWidth=4, cardinality=32):
""" Constructor
Args:
baseWidth: baseWidth for ResNeXt.
cardinality: number of convolution groups.
layers: config of layers, e.g., [3, 4, 6, 3]
"""
super(ResNeXt, self).__init__()
self.cardinality = cardinality
self.baseWidth = baseWidth
self.inplanes = 64
self.output_size = 64
self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
self.bn1 = get_norm(bn_norm, 64, num_splits)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], 1, bn_norm, num_splits, with_ibn=with_ibn)
self.layer2 = self._make_layer(block, 128, layers[1], 2, bn_norm, num_splits, with_ibn=with_ibn)
self.layer3 = self._make_layer(block, 256, layers[2], 2, bn_norm, num_splits, with_ibn=with_ibn)
self.layer4 = self._make_layer(block, 512, layers[3], last_stride, bn_norm, num_splits, with_ibn=with_ibn)
self.random_init()
# fmt: off
if with_nl: self._build_nonlocal(layers, non_layers, bn_norm, num_splits)
else: self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
# fmt: on
def _make_layer(self, block, planes, blocks, stride=1, bn_norm='BN', num_splits=1, with_ibn=False):
""" Stack n bottleneck modules where n is inferred from the depth of the network.
Args:
block: block type used to construct ResNext
planes: number of output channels (need to multiply by block.expansion)
blocks: number of blocks to be built
stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
Returns: a Module consisting of n sequential bottlenecks.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
get_norm(bn_norm, planes * block.expansion, num_splits),
)
layers = []
if planes == 512:
with_ibn = False
layers.append(block(self.inplanes, planes, bn_norm, num_splits, with_ibn,
self.baseWidth, self.cardinality, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(self.inplanes, planes, bn_norm, num_splits, with_ibn, self.baseWidth, self.cardinality, 1, None))
return nn.Sequential(*layers)
def _build_nonlocal(self, layers, non_layers, bn_norm, num_splits):
self.NL_1 = nn.ModuleList(
[Non_local(256, bn_norm, num_splits) for _ in range(non_layers[0])])
self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
self.NL_2 = nn.ModuleList(
[Non_local(512, bn_norm, num_splits) for _ in range(non_layers[1])])
self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
self.NL_3 = nn.ModuleList(
[Non_local(1024, bn_norm, num_splits) for _ in range(non_layers[2])])
self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
self.NL_4 = nn.ModuleList(
[Non_local(2048, bn_norm, num_splits) for _ in range(non_layers[3])])
self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool1(x)
NL1_counter = 0
if len(self.NL_1_idx) == 0:
self.NL_1_idx = [-1]
for i in range(len(self.layer1)):
x = self.layer1[i](x)
if i == self.NL_1_idx[NL1_counter]:
_, C, H, W = x.shape
x = self.NL_1[NL1_counter](x)
NL1_counter += 1
# Layer 2
NL2_counter = 0
if len(self.NL_2_idx) == 0:
self.NL_2_idx = [-1]
for i in range(len(self.layer2)):
x = self.layer2[i](x)
if i == self.NL_2_idx[NL2_counter]:
_, C, H, W = x.shape
x = self.NL_2[NL2_counter](x)
NL2_counter += 1
# Layer 3
NL3_counter = 0
if len(self.NL_3_idx) == 0:
self.NL_3_idx = [-1]
for i in range(len(self.layer3)):
x = self.layer3[i](x)
if i == self.NL_3_idx[NL3_counter]:
_, C, H, W = x.shape
x = self.NL_3[NL3_counter](x)
NL3_counter += 1
# Layer 4
NL4_counter = 0
if len(self.NL_4_idx) == 0:
self.NL_4_idx = [-1]
for i in range(len(self.layer4)):
x = self.layer4[i](x)
if i == self.NL_4_idx[NL4_counter]:
_, C, H, W = x.shape
x = self.NL_4[NL4_counter](x)
NL4_counter += 1
return x
def random_init(self):
self.conv1.weight.data.normal_(0, math.sqrt(2. / (7 * 7 * 64)))
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.InstanceNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def init_pretrained_weights(key):
"""Initializes model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
import os
import errno
import gdown
def _get_torch_home():
ENV_TORCH_HOME = 'TORCH_HOME'
ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME'
DEFAULT_CACHE_DIR = '~/.cache'
torch_home = os.path.expanduser(
os.getenv(
ENV_TORCH_HOME,
os.path.join(
os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'torch'
)
)
)
return torch_home
torch_home = _get_torch_home()
model_dir = os.path.join(torch_home, 'checkpoints')
try:
os.makedirs(model_dir)
except OSError as e:
if e.errno == errno.EEXIST:
# Directory already exists, ignore.
pass
else:
# Unexpected OSError, re-raise.
raise
filename = model_urls[key].split('/')[-1]
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file):
if comm.is_main_process():
gdown.download(model_urls[key], cached_file, quiet=False)
comm.synchronize()
logger.info(f"Loading pretrained model from {cached_file}")
state_dict = torch.load(cached_file, map_location=torch.device('cpu'))
return state_dict
@BACKBONE_REGISTRY.register()
def build_resnext_backbone(cfg):
"""
Create a ResNeXt instance from config.
Returns:
ResNeXt: a :class:`ResNeXt` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
bn_norm = cfg.MODEL.BACKBONE.NORM
num_splits = cfg.MODEL.BACKBONE.NORM_SPLIT
with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
with_nl = cfg.MODEL.BACKBONE.WITH_NL
depth = cfg.MODEL.BACKBONE.DEPTH
# fmt: on
num_blocks_per_stage = {
'50x': [3, 4, 6, 3],
'101x': [3, 4, 23, 3],
'152x': [3, 8, 36, 3], }[depth]
nl_layers_per_stage = {
'50x': [0, 2, 3, 0],
'101x': [0, 2, 3, 0]}[depth]
model = ResNeXt(last_stride, bn_norm, num_splits, with_ibn, with_nl, Bottleneck,
num_blocks_per_stage, nl_layers_per_stage)
if pretrain:
if pretrain_path:
try:
state_dict = torch.load(pretrain_path, map_location=torch.device('cpu'))['model']
# Remove module.encoder in name
new_state_dict = {}
for k in state_dict:
new_k = '.'.join(k.split('.')[2:])
if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
new_state_dict[new_k] = state_dict[k]
state_dict = new_state_dict
logger.info(f"Loading pretrained model from {pretrain_path}")
except FileNotFoundError as e:
logger.info(f'{pretrain_path} is not found! Please check this path.')
raise e
except KeyError as e:
logger.info("State dict keys error! Please check the state dict.")
raise e
else:
key = depth
if with_ibn: key = 'ibn_' + key
state_dict = init_pretrained_weights(key)
incompatible = model.load_state_dict(state_dict, strict=False)
if incompatible.missing_keys:
logger.info(
get_missing_parameters_message(incompatible.missing_keys)
)
if incompatible.unexpected_keys:
logger.info(
get_unexpected_parameters_message(incompatible.unexpected_keys)
)
return model