fast-reid/fastreid/modeling/meta_arch/baseline.py

62 lines
1.8 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
from torch import nn
from fastreid.layers import GeneralizedMeanPoolingP
from fastreid.modeling.backbones import build_backbone
from fastreid.modeling.heads import build_reid_heads
from fastreid.modeling.losses import reid_losses
from .build import META_ARCH_REGISTRY
@META_ARCH_REGISTRY.register()
class Baseline(nn.Module):
def __init__(self, cfg):
super().__init__()
self._cfg = cfg
# backbone
self.backbone = build_backbone(cfg)
# head
if cfg.MODEL.HEADS.POOL_LAYER == 'avgpool':
pool_layer = nn.AdaptiveAvgPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'maxpool':
pool_layer = nn.AdaptiveMaxPool2d(1)
elif cfg.MODEL.HEADS.POOL_LAYER == 'gempool':
pool_layer = GeneralizedMeanPoolingP()
else:
pool_layer = nn.Identity()
in_feat = cfg.MODEL.HEADS.IN_FEAT
num_classes = cfg.MODEL.HEADS.NUM_CLASSES
self.heads = build_reid_heads(cfg, in_feat, num_classes, pool_layer)
def forward(self, inputs):
images = inputs["images"]
if not self.training:
pred_feat = self.inference(images)
try:
return pred_feat, inputs["targets"], inputs["camid"]
except KeyError:
return pred_feat
targets = inputs["targets"]
# training
features = self.backbone(images) # (bs, 2048, 16, 8)
return self.heads(features, targets)
def inference(self, images):
assert not self.training
features = self.backbone(images) # (bs, 2048, 16, 8)
pred_feat = self.heads(features)
return pred_feat
def losses(self, outputs):
logits, feat, targets = outputs
return reid_losses(self._cfg, logits, feat, targets)