fast-reid/fastreid/utils/one_hot.py

59 lines
2.2 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: liaoxingyu5@jd.com
"""
from typing import Optional
import torch
# based on:
# https://github.com/kornia/kornia/blob/master/kornia/utils/one_hot.py
def one_hot(labels: torch.Tensor,
num_classes: int,
dtype: Optional[torch.dtype] = None, ) -> torch.Tensor:
# eps: Optional[float] = 1e-6) -> torch.Tensor:
r"""Converts an integer label x-D tensor to a one-hot (x+1)-D tensor.
Args:
labels (torch.Tensor) : tensor with labels of shape :math:`(N, *)`,
where N is batch size. Each value is an integer
representing correct classification.
num_classes (int): number of classes in labels.
device (Optional[torch.device]): the desired device of returned tensor.
Default: if None, uses the current device for the default tensor type
(see torch.set_default_tensor_type()). device will be the CPU for CPU
tensor types and the current CUDA device for CUDA tensor types.
dtype (Optional[torch.dtype]): the desired data type of returned
tensor. Default: if None, infers data type from values.
Returns:
torch.Tensor: the labels in one hot tensor of shape :math:`(N, C, *)`,
Examples::
>>> labels = torch.LongTensor([[[0, 1], [2, 0]]])
>>> one_hot(labels, num_classes=3)
tensor([[[[1., 0.],
[0., 1.]],
[[0., 1.],
[0., 0.]],
[[0., 0.],
[1., 0.]]]]
"""
if not torch.is_tensor(labels):
raise TypeError("Input labels type is not a torch.Tensor. Got {}"
.format(type(labels)))
if not labels.dtype == torch.int64:
raise ValueError(
"labels must be of the same dtype torch.int64. Got: {}".format(
labels.dtype))
if num_classes < 1:
raise ValueError("The number of classes must be bigger than one."
" Got: {}".format(num_classes))
device = labels.device
shape = labels.shape
one_hot = torch.zeros(shape[0], num_classes, *shape[1:],
device=device, dtype=dtype)
return one_hot.scatter_(1, labels.unsqueeze(1), 1.0)