fast-reid/fastreid/data/datasets/vehicleid.py

127 lines
3.7 KiB
Python

# encoding: utf-8
"""
@author: Jinkai Zheng
@contact: 1315673509@qq.com
"""
import os.path as osp
import random
from .bases import ImageDataset
from ..datasets import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class VehicleID(ImageDataset):
"""VehicleID.
Reference:
Liu et al. Deep relative distance learning: Tell the difference between similar vehicles. CVPR 2016.
URL: `<https://pkuml.org/resources/pku-vehicleid.html>`_
Train dataset statistics:
- identities: 13164.
- images: 113346.
"""
dataset_dir = "vehicleid"
dataset_name = "vehicleid"
def __init__(self, root='datasets', test_list='', **kwargs):
self.dataset_dir = osp.join(root, self.dataset_dir)
self.image_dir = osp.join(self.dataset_dir, 'image')
self.train_list = osp.join(self.dataset_dir, 'train_test_split/train_list.txt')
if test_list:
self.test_list = test_list
else:
self.test_list = osp.join(self.dataset_dir, 'train_test_split/test_list_13164.txt')
required_files = [
self.dataset_dir,
self.image_dir,
self.train_list,
self.test_list,
]
self.check_before_run(required_files)
train = self.process_dir(self.train_list, is_train=True)
query, gallery = self.process_dir(self.test_list, is_train=False)
super(VehicleID, self).__init__(train, query, gallery, **kwargs)
def process_dir(self, list_file, is_train=True):
img_list_lines = open(list_file, 'r').readlines()
dataset = []
for idx, line in enumerate(img_list_lines):
line = line.strip()
vid = int(line.split(' ')[1])
imgid = line.split(' ')[0]
img_path = osp.join(self.image_dir, f"{imgid}.jpg")
imgid = int(imgid)
if is_train:
vid = f"{self.dataset_name}_{vid}"
imgid = f"{self.dataset_name}_{imgid}"
dataset.append((img_path, vid, imgid))
if is_train: return dataset
else:
random.shuffle(dataset)
vid_container = set()
query = []
gallery = []
for sample in dataset:
if sample[1] not in vid_container:
vid_container.add(sample[1])
gallery.append(sample)
else:
query.append(sample)
return query, gallery
@DATASET_REGISTRY.register()
class SmallVehicleID(VehicleID):
"""VehicleID.
Small test dataset statistics:
- identities: 800.
- images: 6493.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.test_list = osp.join(dataset_dir, 'train_test_split/test_list_800.txt')
super(SmallVehicleID, self).__init__(root, self.test_list, **kwargs)
@DATASET_REGISTRY.register()
class MediumVehicleID(VehicleID):
"""VehicleID.
Medium test dataset statistics:
- identities: 1600.
- images: 13377.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.test_list = osp.join(dataset_dir, 'train_test_split/test_list_1600.txt')
super(MediumVehicleID, self).__init__(root, self.test_list, **kwargs)
@DATASET_REGISTRY.register()
class LargeVehicleID(VehicleID):
"""VehicleID.
Large test dataset statistics:
- identities: 2400.
- images: 19777.
"""
def __init__(self, root='datasets', **kwargs):
dataset_dir = osp.join(root, self.dataset_dir)
self.test_list = osp.join(dataset_dir, 'train_test_split/test_list_2400.txt')
super(LargeVehicleID, self).__init__(root, self.test_list, **kwargs)