mirror of https://github.com/JDAI-CV/fast-reid.git
159 lines
4.6 KiB
Python
159 lines
4.6 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: xingyu liao
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
# based on
|
|
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/collect_env.py
|
|
import importlib
|
|
import os
|
|
import re
|
|
import subprocess
|
|
import sys
|
|
from collections import defaultdict
|
|
|
|
import PIL
|
|
import numpy as np
|
|
import torch
|
|
import torchvision
|
|
from tabulate import tabulate
|
|
|
|
__all__ = ["collect_env_info"]
|
|
|
|
|
|
def collect_torch_env():
|
|
try:
|
|
import torch.__config__
|
|
|
|
return torch.__config__.show()
|
|
except ImportError:
|
|
# compatible with older versions of pytorch
|
|
from torch.utils.collect_env import get_pretty_env_info
|
|
|
|
return get_pretty_env_info()
|
|
|
|
|
|
def get_env_module():
|
|
var_name = "FASTREID_ENV_MODULE"
|
|
return var_name, os.environ.get(var_name, "<not set>")
|
|
|
|
|
|
def detect_compute_compatibility(CUDA_HOME, so_file):
|
|
try:
|
|
cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump")
|
|
if os.path.isfile(cuobjdump):
|
|
output = subprocess.check_output(
|
|
"'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True
|
|
)
|
|
output = output.decode("utf-8").strip().split("\n")
|
|
sm = []
|
|
for line in output:
|
|
line = re.findall(r"\.sm_[0-9]*\.", line)[0]
|
|
sm.append(line.strip("."))
|
|
sm = sorted(set(sm))
|
|
return ", ".join(sm)
|
|
else:
|
|
return so_file + "; cannot find cuobjdump"
|
|
except Exception:
|
|
# unhandled failure
|
|
return so_file
|
|
|
|
|
|
def collect_env_info():
|
|
has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM
|
|
torch_version = torch.__version__
|
|
|
|
# NOTE: the use of CUDA_HOME and ROCM_HOME requires the CUDA/ROCM build deps, though in
|
|
# theory detectron2 should be made runnable with only the corresponding runtimes
|
|
from torch.utils.cpp_extension import CUDA_HOME
|
|
|
|
has_rocm = False
|
|
if tuple(map(int, torch_version.split(".")[:2])) >= (1, 5):
|
|
from torch.utils.cpp_extension import ROCM_HOME
|
|
|
|
if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None):
|
|
has_rocm = True
|
|
has_cuda = has_gpu and (not has_rocm)
|
|
|
|
data = []
|
|
data.append(("sys.platform", sys.platform))
|
|
data.append(("Python", sys.version.replace("\n", "")))
|
|
data.append(("numpy", np.__version__))
|
|
|
|
try:
|
|
import fastreid # noqa
|
|
|
|
data.append(
|
|
("fastreid", fastreid.__version__ + " @" + os.path.dirname(fastreid.__file__))
|
|
)
|
|
except ImportError:
|
|
data.append(("fastreid", "failed to import"))
|
|
|
|
data.append(get_env_module())
|
|
data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__)))
|
|
data.append(("PyTorch debug build", torch.version.debug))
|
|
|
|
data.append(("GPU available", has_gpu))
|
|
if has_gpu:
|
|
devices = defaultdict(list)
|
|
for k in range(torch.cuda.device_count()):
|
|
devices[torch.cuda.get_device_name(k)].append(str(k))
|
|
for name, devids in devices.items():
|
|
data.append(("GPU " + ",".join(devids), name))
|
|
|
|
if has_rocm:
|
|
data.append(("ROCM_HOME", str(ROCM_HOME)))
|
|
else:
|
|
data.append(("CUDA_HOME", str(CUDA_HOME)))
|
|
|
|
cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None)
|
|
if cuda_arch_list:
|
|
data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list))
|
|
data.append(("Pillow", PIL.__version__))
|
|
|
|
try:
|
|
data.append(
|
|
(
|
|
"torchvision",
|
|
str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__),
|
|
)
|
|
)
|
|
if has_cuda:
|
|
try:
|
|
torchvision_C = importlib.util.find_spec("torchvision._C").origin
|
|
msg = detect_compute_compatibility(CUDA_HOME, torchvision_C)
|
|
data.append(("torchvision arch flags", msg))
|
|
except ImportError:
|
|
data.append(("torchvision._C", "failed to find"))
|
|
except AttributeError:
|
|
data.append(("torchvision", "unknown"))
|
|
|
|
try:
|
|
import fvcore
|
|
|
|
data.append(("fvcore", fvcore.__version__))
|
|
except ImportError:
|
|
pass
|
|
|
|
try:
|
|
import cv2
|
|
|
|
data.append(("cv2", cv2.__version__))
|
|
except ImportError:
|
|
pass
|
|
env_str = tabulate(data) + "\n"
|
|
env_str += collect_torch_env()
|
|
return env_str
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
import detectron2 # noqa
|
|
except ImportError:
|
|
print(collect_env_info())
|
|
else:
|
|
from fastreid.utils.collect_env import collect_env_info
|
|
|
|
print(collect_env_info())
|