fast-reid/fastreid/data/common.py

65 lines
1.7 KiB
Python

# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import os.path as osp
import numpy as np
import torch.nn.functional as F
import torch
import random
import re
from PIL import Image
from .data_utils import read_image
from torch.utils.data import Dataset
import torchvision.transforms as T
class ReidDataset(Dataset):
"""Image Person ReID Dataset"""
def __init__(self, img_items, transform=None, relabel=True):
self.tfms = transform
self.relabel = relabel
self.pid2label = None
if self.relabel:
self.img_items = []
pids = set()
for i, item in enumerate(img_items):
pid = self.get_pids(item[0], item[1])
self.img_items.append((item[0], pid, item[2])) # replace pid
pids.add(pid)
self.pids = pids
self.pid2label = dict([(p, i) for i, p in enumerate(self.pids)])
else:
self.img_items = img_items
@property
def c(self):
return len(self.pid2label) if self.pid2label is not None else 0
def __len__(self):
return len(self.img_items)
def __getitem__(self, index):
img_path, pid, camid = self.img_items[index]
img = read_image(img_path)
if self.tfms is not None: img = self.tfms(img)
if self.relabel: pid = self.pid2label[pid]
return {
'images': img,
'targets': pid,
'camid': camid
}
def get_pids(self, file_path, pid):
""" Suitable for muilti-dataset training """
if 'cuhk03' in file_path:
prefix = 'cuhk'
else:
prefix = file_path.split('/')[1]
return prefix + '_' + str(pid)