fast-reid/fastreid/layers/am_softmax.py

44 lines
1.4 KiB
Python

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Parameter
class AMSoftmax(nn.Module):
r"""Implement of large margin cosine distance:
Args:
in_feat: size of each input sample
num_classes: size of each output sample
"""
def __init__(self, cfg, in_feat, num_classes):
super().__init__()
self.in_features = in_feat
self._num_classes = num_classes
self.s = cfg.MODEL.HEADS.SCALE
self.m = cfg.MODEL.HEADS.MARGIN
self.weight = Parameter(torch.Tensor(num_classes, in_feat))
nn.init.xavier_uniform_(self.weight)
def forward(self, features, targets):
# --------------------------- cos(theta) & phi(theta) ---------------------------
cosine = F.linear(F.normalize(features), F.normalize(self.weight))
phi = cosine - self.m
# --------------------------- convert label to one-hot ---------------------------
targets = F.one_hot(targets, num_classes=self._num_classes)
output = (targets * phi) + ((1.0 - targets) * cosine)
output *= self.s
return output
def extra_repr(self):
return 'in_features={}, num_classes={}, scale={}, margin={}'.format(
self.in_feat, self._num_classes, self.s, self.m
)