mirror of https://github.com/JDAI-CV/fast-reid.git
123 lines
3.6 KiB
Python
123 lines
3.6 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
import os
|
|
import logging
|
|
import json
|
|
import random
|
|
import math
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import imgaug as ia
|
|
from imgaug import augmenters as iaa
|
|
from tabulate import tabulate
|
|
from termcolor import colored
|
|
from PIL import Image
|
|
|
|
from fastreid.data.datasets import DATASET_REGISTRY
|
|
from fastreid.data.datasets.bases import ImageDataset
|
|
from fastreid.data.data_utils import read_image
|
|
from fastreid.utils.env import seed_all_rng
|
|
from .augment import augment_pos_image, augment_neg_image
|
|
from .shoe import ShoeDataset
|
|
|
|
|
|
@DATASET_REGISTRY.register()
|
|
class ShoePairDataset(ShoeDataset):
|
|
|
|
def __init__(self, img_root: str, anno_path: str, transform=None, mode: str = 'train'):
|
|
super(ShoePairDataset, self).__init__(img_root, anno_path, transform, mode)
|
|
|
|
self.pos_folders = []
|
|
self.neg_folders = []
|
|
for data in self.all_data:
|
|
if len(data['positive_img_list']) >= 2 and len(data['negative_img_list']) >= 1:
|
|
self.pos_folders.append(data['positive_img_list'])
|
|
self.neg_folders.append(data['negative_img_list'])
|
|
|
|
def __len__(self):
|
|
return len(self.pos_folders)
|
|
|
|
def __getitem__(self, idx):
|
|
pos_aug_ratio = 0.5
|
|
neg_aug_ratio = 0
|
|
|
|
pf = self.pos_folders[idx]
|
|
nf = self.neg_folders[idx]
|
|
|
|
label = 1
|
|
use_pseudo = False
|
|
if self.mode == 'train':
|
|
if random.random() < 0.5:
|
|
# generate positive pair
|
|
if random.random() < pos_aug_ratio:
|
|
use_pseudo = True
|
|
else:
|
|
img_path1, img_path2 = random.sample(pf, 2)
|
|
else:
|
|
# generate negative pair
|
|
label = 0
|
|
if random.random() < neg_aug_ratio:
|
|
use_pseudo = True
|
|
else:
|
|
img_path1, img_path2 = random.choice(pf), random.choice(nf)
|
|
|
|
if use_pseudo:
|
|
img_path1 = random.choice(pf)
|
|
else:
|
|
if random.random() < 0.5:
|
|
img_path1, img_path2 = random.sample(pf, 2)
|
|
else:
|
|
label = 0
|
|
img_path1, img_path2 = random.choice(pf), random.choice(nf)
|
|
|
|
|
|
img_path1 = os.path.join(self.img_root, img_path1)
|
|
img1 = read_image(img_path1)
|
|
|
|
if use_pseudo:
|
|
if label == 1:
|
|
img2 = augment_pos_image(img1)
|
|
else:
|
|
img2 = augment_neg_image(self.img_root, nf, img1)
|
|
else:
|
|
img_path2 = os.path.join(self.img_root, img_path2)
|
|
img2 = read_image(img_path2)
|
|
|
|
if self.transform:
|
|
img1 = self.transform(img1)
|
|
img2 = self.transform(img2)
|
|
|
|
return {
|
|
'img1': img1,
|
|
'img2': img2,
|
|
'target': label
|
|
}
|
|
|
|
#-------------下面是辅助信息------------------#
|
|
@property
|
|
def num_classes(self):
|
|
return 2
|
|
|
|
@property
|
|
def num_pos_images(self):
|
|
return sum([len(x) for x in self.pos_folders])
|
|
|
|
@property
|
|
def num_neg_images(self):
|
|
return sum([len(x) for x in self.neg_folders])
|
|
|
|
def describe(self):
|
|
headers = ['subset', 'folders', 'pos images', 'neg images']
|
|
csv_results = [[self.mode, len(self), self.num_pos_images, self.num_neg_images]]
|
|
|
|
# tabulate it
|
|
table = tabulate(
|
|
csv_results,
|
|
tablefmt="pipe",
|
|
headers=headers,
|
|
numalign="left",
|
|
)
|
|
|
|
self._logger.info(f"=> Loaded {self.__class__.__name__}: \n" + colored(table, "cyan"))
|