mirror of https://github.com/JDAI-CV/fast-reid.git
4.0 KiB
4.0 KiB
FastReID Model Zoo and Baselines
Introduction
BoT:
Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.
AGW:
This is a re-implementation of ReID-Survey with a Powerful AGW Baseline
SBS:
stronger baseline on top of BoT with tricks:
- Non-local block
- GeM pooling
- Circle loss
- Freeze backbone training
- Cutout data augmentation & Auto Augmentation
- Cosine annealing learning rate decay
- Soft margin triplet loss
Market1501 Baselines
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50) | ImageNet | 94.4% | 86.1% | 59.4% |
BoT(R50-ibn) | ImageNet | 94.9% | 87.6% | 64.1% |
BoT(S50) | ImageNet | 95.1% | 88.5% | 66.0% |
BoT(R101-ibn) | ImageNet | 95.4% | 88.9% | 67.4% |
AGW:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
AGW(R50) | ImageNet | 95.3% | 88.2% | 66.3% |
AGW(R50-ibn) | ImageNet | 95.1% | 88.7% | 67.1% |
AGW(S50) | ImageNet | 94.7% | 87.1% | 62.2% |
AGW(R101-ibn) | ImageNet | 95.5% | 89.5% | 69.5% |
SBS:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
SBS(R50) | ImageNet | 95.4% | 88.2% | 64.8% |
SBS(R50-ibn) | ImageNet | 95.7% | 89.3% | 67.5% |
SBS(S50) | ImageNet | 95.0% | 87.0% | 60.6% |
SBS(R101-ibn) | ImageNet | 96.3% | 90.3% | 70.0% |
DukeMTMC Baseline
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50) | ImageNet | 87.1% | 76.9% | 41.6% |
BoT(R50-ibn) | ImageNet | 89.6% | 79.1% | 44.4% |
BoT(S50) | ImageNet | 87.8% | 77.7% | 39.6% |
BoT(R101-ibn) | ImageNet | 91.1% | 81.3% | 47.7% |
AGW:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
AGW(R50) | ImageNet | 89.0% | 79.9% | 46.3% |
AGW(R50-ibn) | ImageNet | 89.8% | 80.7% | 47.7% |
AGW(S50) | ImageNet | 89.9% | 79.7% | 44.2% |
AGW(R101-ibn) | ImageNet | 91.4% | 82.1% | 50.2% |
SBS:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
SBS(R50) | ImageNet | 89.6% | 79.8% | 44.6% |
SBS(R50-ibn) | ImageNet | 91.3% | 81.6% | 47.6% |
SBS(S50) | ImageNet | 90.5% | 79.1% | 42.7% |
SBS(R101-ibn) | ImageNet | 92.4% | 83.2% | 49.7% |
MSMT17 Baseline
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50) | ImageNet | 72.3% | 48.3% | 9.7% |
BoT(R50-ibn) | ImageNet | 77.0% | 54.4% | 12.5% |
BoT(S50) | ImageNet | 80.4% | 59.2% | 15.9% |
BoT(R101-ibn) | ImageNet | 79.0% | 57.5% | 14.6% |
AGW:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
AGW(R50) | ImageNet | 76.7% | 53.6% | 12.2% |
AGW(R50-ibn) | ImageNet | 79.3% | 57.5% | 14.3% |
AGW(S50) | ImageNet | 77.3% | 54.7% | 12.6% |
AGW(R101-ibn) | ImageNet | 80.8% | 60.2% | 16.5% |
SBS:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
SBS(R50) | ImageNet | 83.3% | 59.9% | 14.6% |
SBS(R50-ibn) | ImageNet | 84.0% | 61.2% | 15.5% |
SBS(S50) | ImageNet | 82.6% | 58.2% | 13.2% |
SBS(R101-ibn) | ImageNet | 85.1% | 63.3% | 16.6% |
VeRi Baseline
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50-ibn) | ImageNet | 96.1% | 78.8% | 43.8% |
VehicleID Baseline
BoT: Method: BoT(R50-ibn)
Testset size | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
Small(800) | ImageNet | 95.5% | 89.5% | 77.0% |
Medium(1600) | ImageNet | 93.8% | 85.6% | 69.4% |
Large(2400) | ImageNet | 93.3% | 84.1% | 67.4% |
VERI-Wild Baseline
BoT: Method: BoT(R50-ibn)
Testset size | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
Small(3000) | ImageNet | 96.4% | 87.7% | 69.2% |
Medium(5000) | ImageNet | 95.1% | 83.5% | 61.2% |
Large(10000) | ImageNet | 92.5% | 77.3% | 49.8% |