mirror of https://github.com/JDAI-CV/fast-reid.git
69 lines
2.5 KiB
Python
69 lines
2.5 KiB
Python
# encoding: utf-8
|
|
"""
|
|
@author: liaoxingyu
|
|
@contact: sherlockliao01@gmail.com
|
|
"""
|
|
|
|
from fastreid.layers import *
|
|
from fastreid.utils.weight_init import weights_init_kaiming, weights_init_classifier
|
|
from .build import REID_HEADS_REGISTRY
|
|
|
|
|
|
@REID_HEADS_REGISTRY.register()
|
|
class ReductionHead(nn.Module):
|
|
def __init__(self, cfg, in_feat, num_classes, pool_layer):
|
|
super().__init__()
|
|
self._cfg = cfg
|
|
reduction_dim = cfg.MODEL.HEADS.REDUCTION_DIM
|
|
self.neck_feat = cfg.MODEL.HEADS.NECK_FEAT
|
|
|
|
self.pool_layer = pool_layer
|
|
|
|
self.bottleneck = nn.Sequential(
|
|
nn.Conv2d(in_feat, reduction_dim, 1, 1, bias=False),
|
|
get_norm(cfg.MODEL.HEADS.NORM, reduction_dim, cfg.MODEL.HEADS.NORM_SPLIT),
|
|
nn.LeakyReLU(0.1, inplace=True),
|
|
)
|
|
|
|
self.bnneck = get_norm(cfg.MODEL.HEADS.NORM, reduction_dim, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True)
|
|
|
|
self.bottleneck.apply(weights_init_kaiming)
|
|
self.bnneck.apply(weights_init_kaiming)
|
|
|
|
# identity classification layer
|
|
cls_type = cfg.MODEL.HEADS.CLS_LAYER
|
|
if cls_type == 'linear': self.classifier = nn.Linear(in_feat, num_classes, bias=False)
|
|
elif cls_type == 'arcSoftmax': self.classifier = ArcSoftmax(cfg, in_feat, num_classes)
|
|
elif cls_type == 'circleSoftmax': self.classifier = CircleSoftmax(cfg, in_feat, num_classes)
|
|
else:
|
|
raise KeyError(f"{cls_type} is invalid, please choose from "
|
|
f"'linear', 'arcSoftmax' and 'circleSoftmax'.")
|
|
|
|
self.classifier.apply(weights_init_classifier)
|
|
|
|
def forward(self, features, targets=None):
|
|
"""
|
|
See :class:`ReIDHeads.forward`.
|
|
"""
|
|
features = self.pool_layer(features)
|
|
global_feat = self.bottleneck(features)
|
|
bn_feat = self.bnneck(global_feat)
|
|
bn_feat = bn_feat[..., 0, 0]
|
|
|
|
# Evaluation
|
|
if not self.training: return bn_feat
|
|
|
|
# Training
|
|
try: cls_outputs = self.classifier(bn_feat)
|
|
except TypeError: cls_outputs = self.classifier(bn_feat, targets)
|
|
|
|
pred_class_logits = F.linear(bn_feat, self.classifier.weight)
|
|
|
|
if self.neck_feat == "before": feat = global_feat[..., 0, 0]
|
|
elif self.neck_feat == "after": feat = bn_feat
|
|
else:
|
|
raise KeyError("MODEL.HEADS.NECK_FEAT value is invalid, must choose from ('after' & 'before')")
|
|
|
|
return cls_outputs, pred_class_logits, feat
|
|
|