fast-reid/MODEL_ZOO.md

3.6 KiB

FastReID Model Zoo and Baselines

Introduction

BoT:

Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.

AGW:

This is a re-implementation of ReID-Survey with a Powerful AGW Baseline

SBS:

stronger baseline on top of BoT with tricks:

  1. Non-local block
  2. GeM pooling
  3. Circle loss
  4. Freeze backbone training
  5. Cutout data augmentation & Auto Augmentation
  6. Cosine annealing learning rate decay
  7. Soft margin triplet loss

Market1501 Baselines

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50) ImageNet 94.1% 85.9% 59.3%
BoT(R50-ibn) ImageNet - - -
BoT(S50) ImageNet - - -
BoT(R101-ibn) ImageNet - -

AGW:

Method Pretrained Rank@1 mAP mINP
AGW(R50) ImageNet 94.9% 87.4% 63.1%
AGW(R50-ibn) ImageNet - - -
AGW(R101-ibn) ImageNet - - -

SBS:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet - - -
SBS(R50-ibn) ImageNet 95.5% 88.7% 66.4%
SBS(S50) ImageNet - - -
SBS(R101-ibn) ImageNet - - -

DukeMTMC Baseline

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50) ImageNet 86.1% 75.9% 38.7%
BoT(R50-ibn) ImageNet 89.0% 78.8% 43.6%
BoT(S50) ImageNet - - -
BoT(R101-ibn) ImageNet - -

AGW:

Method Pretrained Rank@1 mAP mINP
AGW(R50) ImageNet 88.9% 79.1% 43.2%
AGW(R50-ibn) ImageNet - - -
AGW(R101-ibn) ImageNet - - -

SBS:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet - - -
SBS(R50-ibn) ImageNet 91.3% 81.6% 47.6%
SBS(S50) ImageNet - - -
SBS(R101-ibn) ImageNet - - -

MSMT17 Baseline

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50) ImageNet 70.4% 47.5% 9.6%
BoT(R50-ibn) ImageNet 76.9% 55.0% 13.5%
BoT(S50) ImageNet - - -
BoT(R101-ibn) ImageNet - -

AGW:

Method Pretrained Rank@1 mAP mINP
AGW(R50) ImageNet 75.6% 52.6% 11.9%
AGW(R50-ibn) ImageNet - - -
AGW(R101-ibn) ImageNet - - -

SBS:

Method Pretrained Rank@1 mAP mINP
SBS(R50) ImageNet - - -
SBS(R50-ibn) ImageNet 84.2% 61.5% 15.7%
SBS(S50) ImageNet - - -
SBS(R101-ibn) ImageNet - - -

VeRi Baseline

BoT:

Method Pretrained Rank@1 mAP mINP
BoT(R50-ibn) ImageNet 96.1% 78.8% 43.8%

VehicleID Baseline

BoT: Method: BoT(R50-ibn)

Testset size Pretrained Rank@1 mAP mINP
Small(800) ImageNet 95.5% 89.5% 77.0%
Medium(1600) ImageNet 93.8% 85.6% 69.4%
Large(2400) ImageNet 93.3% 84.1% 67.4%

VERI-Wild Baseline

BoT: Method: BoT(R50-ibn)

Testset size Pretrained Rank@1 mAP mINP
Small(3000) ImageNet 96.4% 87.7% 69.2%
Medium(5000) ImageNet 95.1% 83.5% 61.2%
Large(10000) ImageNet 92.5% 77.3% 49.8%