mirror of https://github.com/JDAI-CV/fast-reid.git
3.6 KiB
3.6 KiB
FastReID Model Zoo and Baselines
Introduction
BoT:
Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.
AGW:
This is a re-implementation of ReID-Survey with a Powerful AGW Baseline
SBS:
stronger baseline on top of BoT with tricks:
- Non-local block
- GeM pooling
- Circle loss
- Freeze backbone training
- Cutout data augmentation & Auto Augmentation
- Cosine annealing learning rate decay
- Soft margin triplet loss
Market1501 Baselines
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50) | ImageNet | 94.1% | 85.9% | 59.3% |
BoT(R50-ibn) | ImageNet | - | - | - |
BoT(S50) | ImageNet | - | - | - |
BoT(R101-ibn) | ImageNet | - | - |
AGW:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
AGW(R50) | ImageNet | 94.9% | 87.4% | 63.1% |
AGW(R50-ibn) | ImageNet | - | - | - |
AGW(R101-ibn) | ImageNet | - | - | - |
SBS:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
SBS(R50) | ImageNet | - | - | - |
SBS(R50-ibn) | ImageNet | 95.5% | 88.7% | 66.4% |
SBS(S50) | ImageNet | - | - | - |
SBS(R101-ibn) | ImageNet | - | - | - |
DukeMTMC Baseline
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50) | ImageNet | 86.1% | 75.9% | 38.7% |
BoT(R50-ibn) | ImageNet | 89.0% | 78.8% | 43.6% |
BoT(S50) | ImageNet | - | - | - |
BoT(R101-ibn) | ImageNet | - | - |
AGW:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
AGW(R50) | ImageNet | 88.9% | 79.1% | 43.2% |
AGW(R50-ibn) | ImageNet | - | - | - |
AGW(R101-ibn) | ImageNet | - | - | - |
SBS:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
SBS(R50) | ImageNet | - | - | - |
SBS(R50-ibn) | ImageNet | 91.3% | 81.6% | 47.6% |
SBS(S50) | ImageNet | - | - | - |
SBS(R101-ibn) | ImageNet | - | - | - |
MSMT17 Baseline
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50) | ImageNet | 70.4% | 47.5% | 9.6% |
BoT(R50-ibn) | ImageNet | 76.9% | 55.0% | 13.5% |
BoT(S50) | ImageNet | - | - | - |
BoT(R101-ibn) | ImageNet | - | - |
AGW:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
AGW(R50) | ImageNet | 75.6% | 52.6% | 11.9% |
AGW(R50-ibn) | ImageNet | - | - | - |
AGW(R101-ibn) | ImageNet | - | - | - |
SBS:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
SBS(R50) | ImageNet | - | - | - |
SBS(R50-ibn) | ImageNet | 84.2% | 61.5% | 15.7% |
SBS(S50) | ImageNet | - | - | - |
SBS(R101-ibn) | ImageNet | - | - | - |
VeRi Baseline
BoT:
Method | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
BoT(R50-ibn) | ImageNet | 96.1% | 78.8% | 43.8% |
VehicleID Baseline
BoT: Method: BoT(R50-ibn)
Testset size | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
Small(800) | ImageNet | 95.5% | 89.5% | 77.0% |
Medium(1600) | ImageNet | 93.8% | 85.6% | 69.4% |
Large(2400) | ImageNet | 93.3% | 84.1% | 67.4% |
VERI-Wild Baseline
BoT: Method: BoT(R50-ibn)
Testset size | Pretrained | Rank@1 | mAP | mINP |
---|---|---|---|---|
Small(3000) | ImageNet | 96.4% | 87.7% | 69.2% |
Medium(5000) | ImageNet | 95.1% | 83.5% | 61.2% |
Large(10000) | ImageNet | 92.5% | 77.3% | 49.8% |