# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # A script to run multinode training with submitit. # -------------------------------------------------------- import argparse import os import uuid from pathlib import Path import main_finetune as classification import submitit def parse_args(): classification_parser = classification.get_args_parser() parser = argparse.ArgumentParser("Submitit for MAE finetune", parents=[classification_parser]) parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node") parser.add_argument("--nodes", default=2, type=int, help="Number of nodes to request") parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job") parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.") parser.add_argument("--partition", default="learnfair", type=str, help="Partition where to submit") parser.add_argument("--use_volta32", action='store_true', help="Request 32G V100 GPUs") parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler") return parser.parse_args() def get_shared_folder() -> Path: user = os.getenv("USER") if Path("/checkpoint/").is_dir(): p = Path(f"/checkpoint/{user}/experiments") p.mkdir(exist_ok=True) return p raise RuntimeError("No shared folder available") def get_init_file(): # Init file must not exist, but it's parent dir must exist. os.makedirs(str(get_shared_folder()), exist_ok=True) init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init" if init_file.exists(): os.remove(str(init_file)) return init_file class Trainer(object): def __init__(self, args): self.args = args def __call__(self): import main_finetune as classification self._setup_gpu_args() classification.main(self.args) def checkpoint(self): import os import submitit self.args.dist_url = get_init_file().as_uri() checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth") if os.path.exists(checkpoint_file): self.args.resume = checkpoint_file print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): import submitit from pathlib import Path job_env = submitit.JobEnvironment() self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id))) self.args.log_dir = self.args.output_dir self.args.gpu = job_env.local_rank self.args.rank = job_env.global_rank self.args.world_size = job_env.num_tasks print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") def main(): args = parse_args() if args.job_dir == "": args.job_dir = get_shared_folder() / "%j" # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30) num_gpus_per_node = args.ngpus nodes = args.nodes timeout_min = args.timeout partition = args.partition kwargs = {} if args.use_volta32: kwargs['slurm_constraint'] = 'volta32gb' if args.comment: kwargs['slurm_comment'] = args.comment executor.update_parameters( mem_gb=40 * num_gpus_per_node, gpus_per_node=num_gpus_per_node, tasks_per_node=num_gpus_per_node, # one task per GPU cpus_per_task=10, nodes=nodes, timeout_min=timeout_min, # Below are cluster dependent parameters slurm_partition=partition, slurm_signal_delay_s=120, **kwargs ) executor.update_parameters(name="mae") args.dist_url = get_init_file().as_uri() args.output_dir = args.job_dir trainer = Trainer(args) job = executor.submit(trainer) # print("Submitted job_id:", job.job_id) print(job.job_id) if __name__ == "__main__": main()