[Fix] Fix filename of model zoo and output of search command (#53)

* fix filename of model zoo

* add comment

* fix install

* update search cmd

* update search command

* fix model zoo

* format output

* update readem

* fix typo

* reset display_width

* fix typo

* support substring match

* simply _filter_field
pull/61/head
Zaida Zhou 2021-07-21 14:03:30 +08:00 committed by GitHub
parent 1bb17cd47d
commit 0a1ffd3c1c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 195 additions and 88 deletions

View File

@ -154,11 +154,11 @@ Please refer to [installation.md](docs/installation.md) for installation.
> mim search mmcls --model resnet
> mim search mmcls --dataset cifar-10
> mim search mmcls --valid-field
> mim search mmcls --condition 'bs>45,epoch>100'
> mim search mmcls --condition 'bs>45 epoch>100'
> mim search mmcls --condition '128<bs<=256'
> mim search mmcls --sort bs epoch
> mim search mmcls --field epoch bs weight
> mim search mmcls --condition 'batch_size>45,epochs>100'
> mim search mmcls --condition 'batch_size>45 epochs>100'
> mim search mmcls --condition '128<batch_size<=256'
> mim search mmcls --sort batch_size epochs
> mim search mmcls --field epochs batch_size weight
> mim search mmcls --exclude-field weight paper
```
@ -171,11 +171,11 @@ Please refer to [installation.md](docs/installation.md) for installation.
get_model_info('mmcls==0.11.0', local=False)
get_model_info('mmcls', models=['resnet'])
get_model_info('mmcls', training_datasets=['cifar-10'])
get_model_info('mmcls', filter_conditions='bs>45,epoch>100')
get_model_info('mmcls', filter_conditions='bs>45 epoch>100')
get_model_info('mmcls', filter_conditions='128<bs<=256')
get_model_info('mmcls', sorted_fields=['bs', 'epoch'])
get_model_info('mmcls', shown_fields=['epoch', 'bs', 'weight'])
get_model_info('mmcls', filter_conditions='batch_size>45,epochs>100')
get_model_info('mmcls', filter_conditions='batch_size>45 epochs>100')
get_model_info('mmcls', filter_conditions='128<batch_size<=256')
get_model_info('mmcls', sorted_fields=['batch_size', 'epochs'])
get_model_info('mmcls', shown_fields=['epochs', 'batch_size', 'weight'])
```
</details>

View File

@ -418,7 +418,9 @@ def install_from_repo(repo_root: str,
"""
def copy_file_to_package():
items = ['tools', 'configs', 'model_zoo.yml']
# rename the model_zoo.yml to model-index.yml but support both of them
# for backward compatibility
items = ['tools', 'configs', 'model_zoo.yml', 'model-index.yml']
module_name = PKG2MODULE.get(package, package)
pkg_root = osp.join(repo_root, module_name)
@ -439,7 +441,9 @@ def install_from_repo(repo_root: str,
def link_file_to_package():
# When user installs package with editable mode, we should create
# symlinks to package, which will synchronize the modified files.
items = ['tools', 'configs', 'model_zoo.yml']
# Besides, rename the model_zoo.yml to model-index.yml but support both
# of them for backward compatibility
items = ['tools', 'configs', 'model_zoo.yml', 'model-index.yml']
module_name = PKG2MODULE.get(package, package)
pkg_root = osp.join(repo_root, module_name)

View File

@ -3,14 +3,14 @@ import pickle
import re
import subprocess
import tempfile
import typing
from pkg_resources import resource_filename
from typing import Any, List, Optional
import click
import pandas as pd
from modelindex.load_model_index import load
from modelindex.models.ModelIndex import ModelIndex
from pandas import DataFrame
from pandas import DataFrame, Series
from mim.click import OptionEatAll, get_downstream_package, param2lowercase
from mim.utils import (
@ -19,19 +19,11 @@ from mim.utils import (
cast2lowercase,
echo_success,
get_github_url,
get_installed_version,
highlighted_error,
is_installed,
split_package_version,
)
abbrieviation = {
'batch_size': 'bs',
'epochs': 'epoch',
'inference_time': 'fps',
'inference_time_(fps)': 'fps',
}
@click.command('search')
@click.argument(
@ -98,11 +90,11 @@ def cli(packages: List[str],
> mim search mmcls --model resnet
> mim search mmcls --dataset cifar-10
> mim search mmcls --valid-filed
> mim search mmcls --condition 'bs>45,epoch>100'
> mim search mmcls --condition 'bs>45 epoch>100'
> mim search mmcls --condition '128<bs<=256'
> mim search mmcls --sort bs epoch
> mim search mmcls --field epoch bs weight
> mim search mmcls --condition 'batch_size>45,epochs>100'
> mim search mmcls --condition 'batch_size>45 epochs>100'
> mim search mmcls --condition '128<batch_size<=256'
> mim search mmcls --sort batch_size epochs
> mim search mmcls --field epochs batch_size weight
> mim search mmcls --exclude-field weight paper
"""
packages_info = {}
@ -215,10 +207,17 @@ def load_metadata_from_local(package: str):
>>> metadata = load_metadata_from_local('mmcls')
"""
if is_installed(package):
version = get_installed_version(package)
click.echo(f'local verison: {version}')
# rename the model_zoo.yml to model-index.yml but support both of them
# for backward compatibility
metadata_path = resource_filename(package, 'model-index.yml')
if not osp.exists(metadata_path):
metadata_path = resource_filename(package, 'model_zoo.yml')
if not osp.exists(metadata_path):
raise FileNotFoundError(
highlighted_error(
'model-index.yml or model_zoo.yml is not found, please'
f' upgrade your {package} to support search command'))
metadata_path = resource_filename(package, 'model_zoo.yml')
metadata = load(metadata_path)
return metadata
@ -260,12 +259,18 @@ def load_metadata_from_remote(package: str) -> Optional[ModelIndex]:
clone_cmd.append(repo_root)
subprocess.check_call(
clone_cmd, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
metadata_path = osp.join(repo_root, 'model_zoo.yml')
# rename the model_zoo.yml to model-index.yml but support both of
# them for backward compatibility
metadata_path = resource_filename(package, 'model-index.yml')
if not osp.exists(metadata_path):
raise FileNotFoundError(
highlighted_error(
'current version can not support "mim search '
f'{package}", please upgrade your {package}.'))
metadata_path = resource_filename(package, 'model_zoo.yml')
if not osp.exists(metadata_path):
raise FileNotFoundError(
highlighted_error(
'model-index.yml or model_zoo.yml is not found, '
f'please upgrade your {package} to support search '
'command'))
metadata = load(metadata_path)
@ -278,22 +283,51 @@ def load_metadata_from_remote(package: str) -> Optional[ModelIndex]:
def convert2df(metadata: ModelIndex) -> DataFrame:
"""Convert metadata into DataFrame format."""
def _parse(data: dict) -> dict:
parsed_data = {}
for key, value in data.items():
unit = ''
name = key.split()
if '(' in key:
# inference time (ms/im) will be splitted into `inference time`
# and `(ms/im)`
name, unit = name[0:-1], name[-1]
name = '_'.join(name)
name = cast2lowercase(name)
if isinstance(value, str):
parsed_data[name] = cast2lowercase(value)
elif isinstance(value, (list, tuple)):
if isinstance(value[0], dict):
# inference time is a list of dict like List[dict]
# each item of inference time represents the environment
# where it is tested
for _value in value:
envs = [
str(_value.get(env)) for env in [
'hardware', 'backend', 'batch size', 'mode',
'resolution'
]
]
new_name = f'inference_time{unit}[{",".join(envs)}]'
parsed_data[new_name] = _value.get('value')
else:
new_name = f'{name}{unit}'
parsed_data[new_name] = ','.join(cast2lowercase(value))
else:
new_name = f'{name}{unit}'
parsed_data[new_name] = value
return parsed_data
name2model = {}
name2collection = {}
for collection in metadata.collections:
collection_info = {}
data = getattr(collection.metadata, 'data', None)
if data:
for key, value in data.items():
name = '_'.join(key.split())
name = cast2lowercase(name)
name = abbrieviation.get(name, name)
if isinstance(value, str):
collection_info[name] = cast2lowercase(value)
elif isinstance(value, (list, tuple)):
collection_info[name] = ','.join(cast2lowercase(value))
else:
collection_info[name] = value
collection_info.update(_parse(data))
paper = getattr(collection, 'paper', None)
if paper:
@ -312,16 +346,7 @@ def convert2df(metadata: ModelIndex) -> DataFrame:
model_info = {}
data = getattr(model.metadata, 'data', None)
if data:
for key, value in model.metadata.data.items():
name = '_'.join(key.split())
name = cast2lowercase(name)
name = abbrieviation.get(name, name)
if isinstance(value, str):
model_info[name] = cast2lowercase(value)
elif isinstance(value, (list, tuple)):
model_info[name] = ','.join(cast2lowercase(value))
else:
model_info[name] = value
model_info.update(_parse(data))
results = getattr(model, 'results', None)
for result in results:
@ -333,7 +358,6 @@ def convert2df(metadata: ModelIndex) -> DataFrame:
for key, value in metrics.items():
name = '_'.join(key.split())
name = cast2lowercase(name)
name = abbrieviation.get(name, name)
model_info[f'{dataset}/{name}'] = value
paper = getattr(model, 'paper', None)
@ -445,7 +469,8 @@ def filter_by_conditions(
and_conditions = []
or_conditions = []
# 'fps>45,epoch>100' or 'fps>45 epoch>100' -> ['fps>40', 'epoch>100']
# 'inference_time>45,epoch>100' or 'inference_time>45 epoch>100' will be
# parsed into ['inference_time>40', 'epoch>100']
filter_conditions = re.split(r'[ ,]+', filter_conditions) # type: ignore
valid_fields = dataframe.columns
@ -519,26 +544,48 @@ def sort_by(dataframe: DataFrame,
ascending: bool = True) -> DataFrame:
"""Sort by the fields.
When sorting output with some fields, substring is spported. For example,
if sorted_fields is ['epo'], the actual sorted fieds will be ['epochs'].
Args:
dataframe (DataFrame): Data to be sorted.
sorted_fields (List[str], optional): Sort output by sorted_fields.
Default: None.
ascending (bool): Sort by ascending or descending. Default: True.
"""
@typing.no_type_check
def _filter_field(valid_fields: Series, input_fields: List[str]):
matched_fields = []
invalid_fields = set()
for input_field in input_fields:
contain_index = valid_fields.str.contains(input_field)
contain_fields = valid_fields[contain_index]
if len(contain_fields) == 1:
matched_fields.extend(contain_fields)
elif len(contain_fields) > 2:
raise ValueError(
highlighted_error(
f'{input_field} matchs {contain_fields}. However, '
'the number of matched fields should be 1, but got'
f' {len(contain_fields)}.'))
else:
invalid_fields.add(input_field)
return matched_fields, invalid_fields
if sorted_fields is None:
return dataframe
sorted_fields = cast2lowercase(sorted_fields)
valid_fields = set(dataframe.columns)
invalid_fields = set(sorted_fields) - valid_fields # type: ignore
valid_fields = dataframe.columns
matched_fields, invalid_fields = _filter_field(valid_fields, sorted_fields)
if invalid_fields:
raise ValueError(
highlighted_error(
f'Expected fields: {valid_fields}, but got {invalid_fields}'))
sorted_fields = list(sorted_fields) # type: ignore
return dataframe.sort_values(by=sorted_fields, ascending=ascending)
return dataframe.sort_values(by=matched_fields, ascending=ascending)
def select_by(dataframe: DataFrame,
@ -546,6 +593,10 @@ def select_by(dataframe: DataFrame,
unshown_fields: Optional[List[str]] = None) -> DataFrame:
"""Select by the fields.
When selecting some fields to be shown or be hidden, substring is spported.
For example, if shown_fields is ['epo'], all field contain 'epo' which will
be chosen. So the new shown field will be ['epochs'].
Args:
dataframe (DataFrame): Data to be filtered.
shown_fields (List[str], optional): Fields to be outputted.
@ -553,6 +604,27 @@ def select_by(dataframe: DataFrame,
unshown_fields (List[str], optional): Fields to be hidden.
Default: None.
"""
@typing.no_type_check
def _filter_field(valid_fields: Series, input_fields: List[str]):
matched_fields = []
invalid_fields = set()
# record those fields which have been added to matched_fields to avoid
# duplicated fields. Although the seen_fields is not necessary if
# matched_fields is type of set, the order of matched_fields will be
# not consistent with the input_fields
seen_fields = set()
for input_field in input_fields:
contain_index = valid_fields.str.contains(input_field)
contain_fields = valid_fields[contain_index]
if len(contain_fields) > 0:
matched_fields.extend(
field for field in (set(contain_fields) - seen_fields))
seen_fields.update(set(contain_fields))
else:
invalid_fields.add(input_field)
return matched_fields, invalid_fields
if shown_fields is None and unshown_fields is None:
return dataframe
@ -561,27 +633,27 @@ def select_by(dataframe: DataFrame,
highlighted_error(
'shown_fields and unshown_fields must be mutually exclusive.'))
valid_fields = set(dataframe.columns)
valid_fields = dataframe.columns
if shown_fields:
shown_fields = cast2lowercase(shown_fields)
invalid_fields = set(shown_fields) - valid_fields # type: ignore
matched_fields, invalid_fields = _filter_field(valid_fields,
shown_fields)
if invalid_fields:
raise ValueError(
highlighted_error(f'Expected fields: {valid_fields}, but got '
f'{invalid_fields}'))
dataframe = dataframe.filter(items=shown_fields)
dataframe = dataframe.filter(items=matched_fields)
else:
unshown_fields = cast2lowercase(unshown_fields) # type: ignore
invalid_fields = set(unshown_fields) - valid_fields # type: ignore
matched_fields, invalid_fields = _filter_field(valid_fields,
unshown_fields)
if invalid_fields:
raise ValueError(
highlighted_error(f'Expected fields: {valid_fields}, but got '
f'{invalid_fields}'))
dataframe = dataframe.drop(
columns=list(unshown_fields)) # type: ignore
dataframe = dataframe.drop(columns=matched_fields)
dataframe = dataframe.dropna(axis=0, how='all')
@ -598,15 +670,45 @@ def dump2json(dataframe: DataFrame, json_path: str) -> None:
dataframe.to_json(json_path)
def print_df(dataframe: DataFrame) -> None:
def print_df(dataframe: DataFrame, display_width: int = 80) -> None:
"""Print Dataframe into terminal."""
def _max_len(dataframe):
key_max_len = 0
value_max_len = 0
for row in dataframe.iterrows():
for key, value in row[1].to_dict().items():
key_max_len = max(key_max_len, len(key))
value_max_len = max(value_max_len, len(str(value)))
return key_max_len, value_max_len
key_max_len, value_max_len = _max_len(dataframe)
key_max_len += 2
if key_max_len + value_max_len > display_width:
value_max_len = display_width - key_max_len
def _table(row):
output = ''
output += '-' * (key_max_len + value_max_len)
output += '\n'
output += click.style(f'config id: {row[0]}\n', fg='green')
row_dict = row[1].dropna().to_dict()
keys = sorted(row_dict.keys())
for key in keys:
output += key.ljust(key_max_len)
value = str(row_dict[key])
if len(value) > value_max_len:
if value_max_len > 3:
output += f'{value[:value_max_len-3]}...'
else:
output += '.' * value_max_len
else:
output += value
output += '\n'
return output
def _generate_output():
for row in dataframe.iterrows():
config_msg = click.style(f'config id: {row[0]}\n', fg='green')
yield from [
config_msg, '-' * pd.get_option('display.width'),
f'\n{row[1].dropna().to_string()}\n'
]
yield _table(row)
click.echo_via_pager(_generate_output())

View File

@ -59,30 +59,31 @@ def test_search():
result = runner.invoke(search, ['mmcls', '--dataset', 'cifar-10'])
assert result.exit_code == 0
# mim search mmcls --condition 'bs>45,epoch>100'
result = runner.invoke(search, ['mmcls', '--condition', 'bs>45,epoch>100'])
# mim search mmcls --condition 'batch_size>45,epochs>100'
result = runner.invoke(
search, ['mmcls', '--condition', 'batch_size>45,epochs>100'])
assert result.exit_code == 0
# mim search mmcls --condition 'bs>45 epoch>100'
result = runner.invoke(search, ['mmcls', '--condition', 'bs>45 epoch>100'])
# mim search mmcls --condition 'batch_size>45 epochs>100'
result = runner.invoke(
search, ['mmcls', '--condition', 'batch_size>45 epochs>100'])
assert result.exit_code == 0
# mim search mmcls --condition '128<bs<=256'
result = runner.invoke(search, ['mmcls', '--condition', '128<bs<=256'])
# mim search mmcls --condition '128<batch_size<=256'
result = runner.invoke(search,
['mmcls', '--condition', '128<batch_size<=256'])
assert result.exit_code == 0
# mim search mmcls --sort epochs
# invalid field
result = runner.invoke(search, ['mmcls', '--sort', 'epochs'])
assert result.exit_code == 1
# mim search mmcls --sort epoch
result = runner.invoke(search, ['mmcls', '--sort', 'epoch'])
assert result.exit_code == 0
# mim search mmcls --sort epochs
result = runner.invoke(search, ['mmcls', '--sort', 'epochs'])
assert result.exit_code == 0
# mim search mmcls --field epochs
# invalid field
result = runner.invoke(search, ['mmcls', '--field', 'epochs'])
assert result.exit_code == 1
# mim search mmcls --field epoch
result = runner.invoke(search, ['mmcls', '--field', 'epoch'])
assert result.exit_code == 0
# mim search mmcls --field epochs
result = runner.invoke(search, ['mmcls', '--field', 'epochs'])
assert result.exit_code == 0