mirror of
https://github.com/open-mmlab/mim.git
synced 2025-06-03 14:59:11 +08:00
225 lines
8.1 KiB
Python
225 lines
8.1 KiB
Python
import os
|
|
import os.path as osp
|
|
import random as rd
|
|
import subprocess
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import click
|
|
|
|
from mim.click import CustomCommand, param2lowercase
|
|
from mim.utils import (
|
|
echo_success,
|
|
exit_with_error,
|
|
get_installed_path,
|
|
highlighted_error,
|
|
is_installed,
|
|
recursively_find,
|
|
)
|
|
|
|
|
|
@click.command(
|
|
name='train',
|
|
context_settings=dict(ignore_unknown_options=True),
|
|
cls=CustomCommand)
|
|
@click.argument('package', type=str, callback=param2lowercase)
|
|
@click.argument('config', type=str)
|
|
@click.option(
|
|
'--launcher',
|
|
type=click.Choice(['none', 'pytorch', 'slurm'], case_sensitive=False),
|
|
default='none',
|
|
help='Job launcher')
|
|
@click.option(
|
|
'--port',
|
|
type=int,
|
|
default=None,
|
|
help=('The port used for inter-process communication (only applicable to '
|
|
'slurm / pytorch launchers). If set to None, will randomly choose '
|
|
'a port between 20000 and 30000. '))
|
|
@click.option('--gpus', type=int, default=1, help='Number of gpus to use')
|
|
@click.option(
|
|
'--gpus-per-node',
|
|
type=int,
|
|
help=('Number of gpus per node to use '
|
|
'(only applicable to launcher == "slurm")'))
|
|
@click.option(
|
|
'--cpus-per-task',
|
|
type=int,
|
|
default=2,
|
|
help='Number of cpus per task (only applicable to launcher == "slurm")')
|
|
@click.option(
|
|
'--partition',
|
|
type=str,
|
|
help='The partition to use (only applicable to launcher == "slurm")')
|
|
@click.option(
|
|
'--srun-args', type=str, help='Other srun arguments that might be used')
|
|
@click.argument('other_args', nargs=-1, type=click.UNPROCESSED)
|
|
def cli(package: str,
|
|
config: str,
|
|
gpus: int,
|
|
gpus_per_node: int,
|
|
partition: str,
|
|
cpus_per_task: int = 2,
|
|
launcher: str = 'none',
|
|
port: int = None,
|
|
srun_args: Optional[str] = None,
|
|
other_args: tuple = ()) -> None:
|
|
"""Perform Training.
|
|
|
|
Example:
|
|
|
|
\b
|
|
# Train models on a single server with CPU by setting `gpus` to 0 and
|
|
# 'launcher' to 'none' (if applicable). The training script of the
|
|
# corresponding codebase will fail if it doesn't support CPU training.
|
|
> mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 0
|
|
# Train models on a single server with one GPU
|
|
> mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 1
|
|
# Train models on a single server with 4 GPUs and pytorch distributed
|
|
> mim train mmcls resnet101_b16x8_cifar10.py --work-dir tmp --gpus 4 \
|
|
--launcher pytorch
|
|
# Train models on a slurm HPC with one 8-GPU node
|
|
> mim train mmcls resnet101_b16x8_cifar10.py --launcher slurm --gpus 8 \
|
|
--gpus-per-node 8 --partition partition_name --work-dir tmp
|
|
# Print help messages of sub-command train
|
|
> mim train -h
|
|
# Print help messages of sub-command train and the training script of mmcls
|
|
> mim train mmcls -h
|
|
"""
|
|
is_success, msg = train(
|
|
package=package,
|
|
config=config,
|
|
gpus=gpus,
|
|
gpus_per_node=gpus_per_node,
|
|
cpus_per_task=cpus_per_task,
|
|
partition=partition,
|
|
launcher=launcher,
|
|
port=port,
|
|
srun_args=srun_args,
|
|
other_args=other_args)
|
|
|
|
if is_success:
|
|
echo_success(msg) # type: ignore
|
|
else:
|
|
exit_with_error(msg)
|
|
|
|
|
|
def train(
|
|
package: str,
|
|
config: str,
|
|
gpus: int,
|
|
gpus_per_node: int = None,
|
|
cpus_per_task: int = 2,
|
|
partition: str = None,
|
|
launcher: str = 'none',
|
|
port: int = None,
|
|
srun_args: Optional[str] = None,
|
|
other_args: tuple = ()
|
|
) -> Tuple[bool, Union[str, Exception]]:
|
|
"""Train a model with given config.
|
|
|
|
Args:
|
|
package (str): The codebase name.
|
|
config (str): The config file path. If not exists, will search in the
|
|
config files of the codebase.
|
|
gpus (int): Number of gpus used for training.
|
|
gpus_per_node (int, optional): Number of gpus per node to use
|
|
(only applicable to launcher == "slurm"). Defaults to None.
|
|
cpus_per_task (int, optional): Number of cpus per task to use
|
|
(only applicable to launcher == "slurm"). Defaults to None.
|
|
partition (str, optional): The partition name
|
|
(only applicable to launcher == "slurm"). Defaults to None.
|
|
launcher (str, optional): The launcher used to launch jobs.
|
|
Defaults to 'none'.
|
|
port (int | None, optional): The port used for inter-process
|
|
communication (only applicable to slurm / pytorch launchers).
|
|
Default to None. If set to None, will randomly choose a port
|
|
between 20000 and 30000.
|
|
srun_args (str, optional): Other srun arguments that might be
|
|
used, all arguments should be in a string. Defaults to None.
|
|
other_args (tuple, optional): Other arguments, will be passed to the
|
|
codebase's training script. Defaults to ().
|
|
"""
|
|
# If launcher == "slurm", must have following args
|
|
if launcher == 'slurm':
|
|
msg = ('If launcher is slurm, '
|
|
'gpus-per-node and partition should not be None')
|
|
flag = (gpus_per_node is not None) and (partition is not None)
|
|
assert flag, msg
|
|
|
|
if port is None:
|
|
port = rd.randint(20000, 30000)
|
|
|
|
if launcher in ['slurm', 'pytorch']:
|
|
click.echo(f'Using port {port} for synchronization. ')
|
|
|
|
if not is_installed(package):
|
|
msg = (f'The codebase {package} is not installed, '
|
|
'do you want to install the latest release? ')
|
|
if click.confirm(msg):
|
|
click.echo(f'Installing {package}')
|
|
cmd = ['mim', 'install', package]
|
|
ret = subprocess.check_call(cmd)
|
|
if ret != 0:
|
|
msg = f'{package} is not successfully installed'
|
|
raise RuntimeError(highlighted_error(msg))
|
|
else:
|
|
click.echo(f'{package} is successfully installed')
|
|
else:
|
|
msg = f'You can not train this model without {package} installed.'
|
|
return False, msg
|
|
|
|
pkg_root = get_installed_path(package)
|
|
|
|
if not osp.exists(config):
|
|
files = recursively_find(pkg_root, osp.basename(config))
|
|
|
|
if len(files) == 0:
|
|
msg = (f"The path {config} doesn't exist and we can not find "
|
|
f'the config file in codebase {package}.')
|
|
raise ValueError(highlighted_error(msg))
|
|
elif len(files) > 1:
|
|
msg = (
|
|
f"The path {config} doesn't exist and we find multiple "
|
|
f'config files with same name in codebase {package}: {files}.')
|
|
raise ValueError(highlighted_error(msg))
|
|
|
|
click.echo(
|
|
f"The path {config} doesn't exist but we find the config file "
|
|
f'in codebase {package}, will use {files[0]} instead.')
|
|
config = files[0]
|
|
|
|
train_script = osp.join(pkg_root, 'tools/train.py')
|
|
|
|
common_args = ['--launcher', launcher] + list(other_args)
|
|
|
|
if launcher == 'none':
|
|
if gpus:
|
|
cmd = ['python', train_script, config, '--gpus',
|
|
str(gpus)] + common_args
|
|
else:
|
|
cmd = ['python', train_script, config, '--device', 'cpu'
|
|
] + common_args
|
|
elif launcher == 'pytorch':
|
|
cmd = [
|
|
'python', '-m', 'torch.distributed.launch',
|
|
f'--nproc_per_node={gpus}', f'--master_port={port}', train_script,
|
|
config
|
|
] + common_args
|
|
elif launcher == 'slurm':
|
|
parsed_srun_args = srun_args.split() if srun_args else []
|
|
cmd = [
|
|
'srun', '-p', f'{partition}', f'--gres=gpu:{gpus_per_node}',
|
|
f'--ntasks={gpus}', f'--ntasks-per-node={gpus_per_node}',
|
|
f'--cpus-per-task={cpus_per_task}', '--kill-on-bad-exit=1'
|
|
] + parsed_srun_args + ['python', '-u', train_script, config
|
|
] + common_args
|
|
|
|
cmd_text = ' '.join(cmd)
|
|
click.echo(f'Training command is {cmd_text}. ')
|
|
ret = subprocess.check_call(
|
|
cmd, env=dict(os.environ, MASTER_PORT=str(port)))
|
|
if ret == 0:
|
|
return True, 'Training finished successfully. '
|
|
else:
|
|
return False, 'Training not finished successfully. '
|