190 lines
6.3 KiB
Python
Raw Normal View History

2020-06-15 16:42:15 +08:00
import pytest
import torch
2020-06-30 15:50:36 +08:00
from torch.nn.modules import GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
2020-06-15 16:42:15 +08:00
from mmcls.models.backbones import VGG
from mmcls.models.utils import (Augments, HybridEmbed, InvertedResidual,
PatchEmbed, SELayer, channel_shuffle,
make_divisible)
2020-06-30 15:50:36 +08:00
def is_norm(modules):
"""Check if is one of the norms."""
if isinstance(modules, (GroupNorm, _BatchNorm)):
return True
return False
2020-06-15 16:42:15 +08:00
def test_make_divisible():
# test min_value is None
result = make_divisible(34, 8, None)
assert result == 32
# test when new_value > min_ratio * value
result = make_divisible(10, 8, min_ratio=0.9)
assert result == 16
# test min_value = 0.8
result = make_divisible(33, 8, min_ratio=0.8)
assert result == 32
def test_channel_shuffle():
x = torch.randn(1, 24, 56, 56)
with pytest.raises(AssertionError):
# num_channels should be divisible by groups
channel_shuffle(x, 7)
groups = 3
batch_size, num_channels, height, width = x.size()
channels_per_group = num_channels // groups
out = channel_shuffle(x, groups)
# test the output value when groups = 3
for b in range(batch_size):
for c in range(num_channels):
c_out = c % channels_per_group * groups + c // channels_per_group
for i in range(height):
for j in range(width):
assert x[b, c, i, j] == out[b, c_out, i, j]
2020-06-30 15:50:36 +08:00
def test_inverted_residual():
with pytest.raises(AssertionError):
# stride must be in [1, 2]
InvertedResidual(16, 16, 32, stride=3)
with pytest.raises(AssertionError):
# se_cfg must be None or dict
InvertedResidual(16, 16, 32, se_cfg=list())
# Add expand conv if in_channels and mid_channels is not the same
assert InvertedResidual(32, 16, 32).with_expand_conv is False
assert InvertedResidual(16, 16, 32).with_expand_conv is True
2020-06-30 15:50:36 +08:00
# Test InvertedResidual forward, stride=1
block = InvertedResidual(16, 16, 32, stride=1)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert getattr(block, 'se', None) is None
assert block.with_res_shortcut
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward, stride=2
block = InvertedResidual(16, 16, 32, stride=2)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert not block.with_res_shortcut
assert x_out.shape == torch.Size((1, 16, 28, 28))
# Test InvertedResidual forward with se layer
se_cfg = dict(channels=32)
block = InvertedResidual(16, 16, 32, stride=1, se_cfg=se_cfg)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert isinstance(block.se, SELayer)
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward without expand conv
block = InvertedResidual(32, 16, 32)
2020-06-30 15:50:36 +08:00
x = torch.randn(1, 32, 56, 56)
x_out = block(x)
assert getattr(block, 'expand_conv', None) is None
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward with GroupNorm
block = InvertedResidual(
16, 16, 32, norm_cfg=dict(type='GN', num_groups=2))
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
for m in block.modules():
if is_norm(m):
assert isinstance(m, GroupNorm)
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward with HSigmoid
block = InvertedResidual(16, 16, 32, act_cfg=dict(type='HSigmoid'))
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert x_out.shape == torch.Size((1, 16, 56, 56))
# Test InvertedResidual forward with checkpoint
block = InvertedResidual(16, 16, 32, with_cp=True)
x = torch.randn(1, 16, 56, 56)
x_out = block(x)
assert block.with_cp
assert x_out.shape == torch.Size((1, 16, 56, 56))
def test_augments():
imgs = torch.randn(4, 3, 32, 32)
labels = torch.randint(0, 10, (4, ))
# Test cutmix
augments_cfg = dict(type='BatchCutMix', alpha=1., num_classes=10, prob=1.)
augs = Augments(augments_cfg)
mixed_imgs, mixed_labels = augs(imgs, labels)
assert mixed_imgs.shape == torch.Size((4, 3, 32, 32))
assert mixed_labels.shape == torch.Size((4, 10))
# Test mixup
augments_cfg = dict(type='BatchMixup', alpha=1., num_classes=10, prob=1.)
augs = Augments(augments_cfg)
mixed_imgs, mixed_labels = augs(imgs, labels)
assert mixed_imgs.shape == torch.Size((4, 3, 32, 32))
assert mixed_labels.shape == torch.Size((4, 10))
# Test cutmixup
augments_cfg = [
dict(type='BatchCutMix', alpha=1., num_classes=10, prob=0.5),
dict(type='BatchMixup', alpha=1., num_classes=10, prob=0.3)
]
augs = Augments(augments_cfg)
mixed_imgs, mixed_labels = augs(imgs, labels)
assert mixed_imgs.shape == torch.Size((4, 3, 32, 32))
assert mixed_labels.shape == torch.Size((4, 10))
augments_cfg = [
dict(type='BatchCutMix', alpha=1., num_classes=10, prob=0.5),
dict(type='BatchMixup', alpha=1., num_classes=10, prob=0.5)
]
augs = Augments(augments_cfg)
mixed_imgs, mixed_labels = augs(imgs, labels)
assert mixed_imgs.shape == torch.Size((4, 3, 32, 32))
assert mixed_labels.shape == torch.Size((4, 10))
augments_cfg = [
dict(type='BatchCutMix', alpha=1., num_classes=10, prob=0.5),
dict(type='BatchMixup', alpha=1., num_classes=10, prob=0.3),
dict(type='Identity', num_classes=10, prob=0.2)
]
augs = Augments(augments_cfg)
mixed_imgs, mixed_labels = augs(imgs, labels)
assert mixed_imgs.shape == torch.Size((4, 3, 32, 32))
assert mixed_labels.shape == torch.Size((4, 10))
def test_embed():
# Test PatchEmbed
patch_embed = PatchEmbed()
img = torch.randn(1, 3, 224, 224)
img = patch_embed(img)
assert img.shape == torch.Size((1, 196, 768))
# Test PatchEmbed with stride = 8
conv_cfg = dict(kernel_size=16, stride=8)
patch_embed = PatchEmbed(conv_cfg=conv_cfg)
img = torch.randn(1, 3, 224, 224)
img = patch_embed(img)
assert img.shape == torch.Size((1, 729, 768))
# Test VGG11 HybridEmbed
backbone = VGG(11, norm_eval=True)
backbone.init_weights()
patch_embed = HybridEmbed(backbone)
img = torch.randn(1, 3, 224, 224)
img = patch_embed(img)
assert img.shape == torch.Size((1, 49, 768))