mmclassification/mmcls/structures/cls_data_sample.py

236 lines
7.9 KiB
Python
Raw Normal View History

2022-05-07 18:01:08 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
from multiprocessing.reduction import ForkingPickler
2022-05-07 18:01:08 +08:00
from numbers import Number
from typing import Sequence, Union
import numpy as np
import torch
from mmengine.structures import BaseDataElement, LabelData
from mmengine.utils import is_str
2022-05-07 18:01:08 +08:00
def format_label(
value: Union[torch.Tensor, np.ndarray, Sequence, int]) -> torch.Tensor:
"""Convert various python types to label-format tensor.
2022-05-07 18:01:08 +08:00
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int`.
Args:
value (torch.Tensor | numpy.ndarray | Sequence | int): Label value.
Returns:
:obj:`torch.Tensor`: The foramtted label tensor.
2022-05-07 18:01:08 +08:00
"""
# Handle single number
if isinstance(value, (torch.Tensor, np.ndarray)) and value.ndim == 0:
value = int(value.item())
if isinstance(value, np.ndarray):
value = torch.from_numpy(value).to(torch.long)
elif isinstance(value, Sequence) and not is_str(value):
value = torch.tensor(value).to(torch.long)
2022-05-07 18:01:08 +08:00
elif isinstance(value, int):
value = torch.LongTensor([value])
elif not isinstance(value, torch.Tensor):
raise TypeError(f'Type {type(value)} is not an available label type.')
assert value.ndim == 1, \
f'The dims of value should be 1, but got {value.ndim}.'
2022-05-07 18:01:08 +08:00
return value
def format_score(
value: Union[torch.Tensor, np.ndarray, Sequence, int]) -> torch.Tensor:
"""Convert various python types to score-format tensor.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`.
Args:
value (torch.Tensor | numpy.ndarray | Sequence): Score values.
Returns:
:obj:`torch.Tensor`: The foramtted score tensor.
"""
if isinstance(value, np.ndarray):
value = torch.from_numpy(value).float()
elif isinstance(value, Sequence) and not is_str(value):
value = torch.tensor(value).float()
elif not isinstance(value, torch.Tensor):
raise TypeError(f'Type {type(value)} is not an available label type.')
assert value.ndim == 1, \
f'The dims of value should be 1, but got {value.ndim}.'
return value
2022-05-07 18:01:08 +08:00
class ClsDataSample(BaseDataElement):
"""A data structure interface of classification task.
It's used as interfaces between different components.
Meta fields:
2022-05-07 18:01:08 +08:00
img_shape (Tuple): The shape of the corresponding input image.
Used for visualization.
ori_shape (Tuple): The original shape of the corresponding image.
Used for visualization.
num_classes (int): The number of all categories.
Used for label format conversion.
Data fields:
gt_label (:obj:`~mmengine.structures.LabelData`): The ground truth
label.
pred_label (:obj:`~mmengine.structures.LabelData`): The predicted
label.
2022-05-07 18:01:08 +08:00
scores (torch.Tensor): The outputs of model.
logits (torch.Tensor): The outputs of model without softmax nor
sigmoid.
Examples:
>>> import torch
>>> from mmcls.structures import ClsDataSample
2022-05-07 18:01:08 +08:00
>>>
>>> img_meta = dict(img_shape=(960, 720), num_classes=5)
>>> data_sample = ClsDataSample(metainfo=img_meta)
>>> data_sample.set_gt_label(3)
>>> print(data_sample)
<ClsDataSample(
META INFORMATION
num_classes = 5
img_shape = (960, 720)
DATA FIELDS
gt_label: <LabelData(
META INFORMATION
num_classes: 5
DATA FIELDS
label: tensor([3])
) at 0x7f21fb1b9190>
) at 0x7f21fb1b9880>
>>> # For multi-label data
>>> data_sample.set_gt_label([0, 1, 4])
>>> print(data_sample.gt_label)
<LabelData(
META INFORMATION
num_classes: 5
DATA FIELDS
2022-05-13 16:55:36 +08:00
label: tensor([0, 1, 4])
2022-05-07 18:01:08 +08:00
) at 0x7fd7d1b41970>
2022-05-13 16:55:36 +08:00
>>> # Set one-hot format score
>>> score = torch.tensor([0.1, 0.1, 0.6, 0.1, 0.1])
>>> data_sample.set_pred_score(score)
>>> print(data_sample.pred_label)
2022-05-07 18:01:08 +08:00
<LabelData(
META INFORMATION
num_classes: 5
DATA FIELDS
2022-05-13 16:55:36 +08:00
score: tensor([0.1, 0.1, 0.6, 0.1, 0.1])
2022-05-07 18:01:08 +08:00
) at 0x7fd7d1b41970>
"""
def set_gt_label(
2022-05-13 16:55:36 +08:00
self, value: Union[np.ndarray, torch.Tensor, Sequence[Number], Number]
) -> 'ClsDataSample':
"""Set label of ``gt_label``."""
label_data = getattr(self, '_gt_label', LabelData())
label_data.label = format_label(value)
self.gt_label = label_data
2022-05-13 16:55:36 +08:00
return self
def set_gt_score(self, value: torch.Tensor) -> 'ClsDataSample':
"""Set score of ``gt_label``."""
label_data = getattr(self, '_gt_label', LabelData())
label_data.score = format_score(value)
if hasattr(self, 'num_classes'):
assert len(label_data.score) == self.num_classes, \
f'The length of score {len(label_data.score)} should be '\
f'equal to the num_classes {self.num_classes}.'
2022-05-13 16:55:36 +08:00
else:
self.set_field(
name='num_classes',
value=len(label_data.score),
field_type='metainfo')
self.gt_label = label_data
2022-05-13 16:55:36 +08:00
return self
2022-05-07 18:01:08 +08:00
def set_pred_label(
2022-05-13 16:55:36 +08:00
self, value: Union[np.ndarray, torch.Tensor, Sequence[Number], Number]
) -> 'ClsDataSample':
"""Set label of ``pred_label``."""
label_data = getattr(self, '_pred_label', LabelData())
label_data.label = format_label(value)
self.pred_label = label_data
2022-05-13 16:55:36 +08:00
return self
def set_pred_score(self, value: torch.Tensor) -> 'ClsDataSample':
"""Set score of ``pred_label``."""
label_data = getattr(self, '_pred_label', LabelData())
label_data.score = format_score(value)
if hasattr(self, 'num_classes'):
assert len(label_data.score) == self.num_classes, \
f'The length of score {len(label_data.score)} should be '\
f'equal to the num_classes {self.num_classes}.'
2022-05-13 16:55:36 +08:00
else:
self.set_field(
name='num_classes',
value=len(label_data.score),
field_type='metainfo')
self.pred_label = label_data
2022-05-13 16:55:36 +08:00
return self
2022-05-10 21:08:29 +08:00
@property
def gt_label(self):
return self._gt_label
@gt_label.setter
def gt_label(self, value: LabelData):
self.set_field(value, '_gt_label', dtype=LabelData)
@gt_label.deleter
def gt_label(self):
del self._gt_label
@property
def pred_label(self):
return self._pred_label
@pred_label.setter
def pred_label(self, value: LabelData):
self.set_field(value, '_pred_label', dtype=LabelData)
@pred_label.deleter
def pred_label(self):
del self._pred_label
def _reduce_cls_datasample(data_sample):
"""reduce ClsDataSample."""
attr_dict = data_sample.__dict__
convert_keys = []
for k, v in attr_dict.items():
if isinstance(v, LabelData):
attr_dict[k] = v.numpy()
convert_keys.append(k)
return _rebuild_cls_datasample, (attr_dict, convert_keys)
def _rebuild_cls_datasample(attr_dict, convert_keys):
"""rebuild ClsDataSample."""
data_sample = ClsDataSample()
for k in convert_keys:
attr_dict[k] = attr_dict[k].to_tensor()
data_sample.__dict__ = attr_dict
return data_sample
# Due to the multi-processing strategy of PyTorch, ClsDataSample may consume
# many file descriptors because it contains multiple LabelData with tensors.
# Here we overwrite the reduce function of ClsDataSample in ForkingPickler and
# convert these tensors to np.ndarray during pickling. It may influence the
# performance of dataloader, but slightly because these tensors in LabelData
# are very small.
ForkingPickler.register(ClsDataSample, _reduce_cls_datasample)