mmclassification/mmcls/models/backbones/seresnet.py

116 lines
3.9 KiB
Python
Raw Normal View History

2020-06-17 14:20:20 +08:00
import torch.utils.checkpoint as cp
from ..builder import BACKBONES
from ..utils.se_layer import SELayer
from .resnet import Bottleneck, ResLayer, ResNet
class SEBottleneck(Bottleneck):
"""SEBottleneck block for SEResNet.
Args:
inplanes (int): The input channels of the SEBottleneck block.
planes (int): The output channel base of the SEBottleneck block.
se_ratio (int): Squeeze ratio in SELayer. Default: 16
"""
expansion = 4
def __init__(self, inplanes, planes, se_ratio=16, **kwargs):
super(SEBottleneck, self).__init__(inplanes, planes, **kwargs)
self.se_layer = SELayer(planes * self.expansion, ratio=se_ratio)
def forward(self, x):
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.norm3(out)
out = self.se_layer(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
@BACKBONES.register_module()
class SEResNet(ResNet):
"""SEResNet backbone.
Args:
depth (int): Depth of seresnet, from {50, 101, 152}.
in_channels (int): Number of input image channels. Normally 3.
base_channels (int): Number of base channels of hidden layer.
num_stages (int): Resnet stages, normally 4.
strides (Sequence[int]): Strides of the first block of each stage.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages.
se_ratio (int): Squeeze ratio in SELayer. Default: 16
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
norm_cfg (dict): Dictionary to construct and config norm layer.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity.
Example:
>>> from mmcls.models import SEResNet
>>> import torch
>>> self = SEResNet(depth=50)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 224, 224)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 64, 56, 56)
(1, 128, 28, 28)
(1, 256, 14, 14)
(1, 512, 7, 7)
"""
arch_settings = {
50: (SEBottleneck, (3, 4, 6, 3)),
101: (SEBottleneck, (3, 4, 23, 3)),
152: (SEBottleneck, (3, 8, 36, 3))
}
def __init__(self, depth, se_ratio=16, **kwargs):
if depth not in self.arch_settings:
raise KeyError(f'invalid depth {depth} for resnet')
self.se_ratio = se_ratio
super(SEResNet, self).__init__(depth, **kwargs)
def make_res_layer(self, **kwargs):
return ResLayer(se_ratio=self.se_ratio, **kwargs)