mmclassification/configs/hornet/README.md

52 lines
6.1 KiB
Markdown
Raw Normal View History

# HorNet
> [HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions](https://arxiv.org/pdf/2207.14284v2.pdf)
<!-- [ALGORITHM] -->
## Abstract
Recent progress in vision Transformers exhibits great success in various tasks driven by the new spatial modeling mechanism based on dot-product self-attention. In this paper, we show that the key ingredients behind the vision Transformers, namely input-adaptive, long-range and high-order spatial interactions, can also be efficiently implemented with a convolution-based framework. We present the Recursive Gated Convolution (g nConv) that performs high-order spatial interactions with gated convolutions and recursive designs. The new operation is highly flexible and customizable, which is compatible with various variants of convolution and extends the two-order interactions in self-attention to arbitrary orders without introducing significant extra computation. g nConv can serve as a plug-and-play module to improve various vision Transformers and convolution-based models. Based on the operation, we construct a new family of generic vision backbones named HorNet. Extensive experiments on ImageNet classification, COCO object detection and ADE20K semantic segmentation show HorNet outperform Swin Transformers and ConvNeXt by a significant margin with similar overall architecture and training configurations. HorNet also shows favorable scalability to more training data and a larger model size. Apart from the effectiveness in visual encoders, we also show g nConv can be applied to task-specific decoders and consistently improve dense prediction performance with less computation. Our results demonstrate that g nConv can be a new basic module for visual modeling that effectively combines the merits of both vision Transformers and CNNs. Code is available at https://github.com/raoyongming/HorNet.
<div align=center>
<img src="https://user-images.githubusercontent.com/24734142/188356236-b8e3db94-eaa6-48e9-b323-15e5ba7f2991.png" width="80%"/>
</div>
## Results and models
### ImageNet-1k
| Model | Pretrain | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Config | Download |
| :-----------: | :----------: | :--------: | :-------: | :------: | :-------: | :-------: | :--------------------------------------------------------------: | :----------------------------------------------------------------: |
| HorNet-T\* | From scratch | 224x224 | 22.41 | 3.98 | 82.84 | 96.24 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-tiny_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-tiny_3rdparty_in1k_20220915-0e8eedff.pth) |
| HorNet-T-GF\* | From scratch | 224x224 | 22.99 | 3.9 | 82.98 | 96.38 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-tiny-gf_8xb128_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-tiny-gf_3rdparty_in1k_20220915-4c35a66b.pth) |
| HorNet-S\* | From scratch | 224x224 | 49.53 | 8.83 | 83.79 | 96.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-small_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-small_3rdparty_in1k_20220915-5935f60f.pth) |
| HorNet-S-GF\* | From scratch | 224x224 | 50.4 | 8.71 | 83.98 | 96.77 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-small-gf_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-small-gf_3rdparty_in1k_20220915-649ca492.pth) |
| HorNet-B\* | From scratch | 224x224 | 87.26 | 15.59 | 84.24 | 96.94 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-base_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-base_3rdparty_in1k_20220915-a06176bb.pth) |
| HorNet-B-GF\* | From scratch | 224x224 | 88.42 | 15.42 | 84.32 | 96.95 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hornet/hornet-base-gf_8xb64_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-base-gf_3rdparty_in1k_20220915-82c06fa7.pth) |
\*Models with * are converted from [the official repo](https://github.com/raoyongming/HorNet). The config files of these models are only for validation. We don't ensure these config files' training accuracy and welcome you to contribute your reproduction results.
### Pre-trained Models
The pre-trained models on ImageNet-21k are used to fine-tune on the downstream tasks.
| Model | Pretrain | resolution | Params(M) | Flops(G) | Download |
| :--------------: | :----------: | :--------: | :-------: | :------: | :------------------------------------------------------------------------------------------------------------------------: |
| HorNet-L\* | ImageNet-21k | 224x224 | 194.54 | 34.83 | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-large_3rdparty_in21k_20220909-9ccef421.pth) |
| HorNet-L-GF\* | ImageNet-21k | 224x224 | 196.29 | 34.58 | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-large-gf_3rdparty_in21k_20220909-3aea3b61.pth) |
| HorNet-L-GF384\* | ImageNet-21k | 384x384 | 201.23 | 101.63 | [model](https://download.openmmlab.com/mmclassification/v0/hornet/hornet-large-gf384_3rdparty_in21k_20220909-80894290.pth) |
\*Models with * are converted from [the official repo](https://github.com/raoyongming/HorNet).
## Citation
```
@article{rao2022hornet,
title={HorNet: Efficient High-Order Spatial Interactions with Recursive Gated Convolutions},
author={Rao, Yongming and Zhao, Wenliang and Tang, Yansong and Zhou, Jie and Lim, Ser-Lam and Lu, Jiwen},
journal={arXiv preprint arXiv:2207.14284},
year={2022}
}
```