mmclassification/configs/_base_/default_runtime.py

52 lines
1.4 KiB
Python
Raw Normal View History

# defaults to use registries in mmpretrain
default_scope = 'mmpretrain'
2022-05-23 16:43:23 +08:00
# configure default hooks
2022-05-23 16:43:23 +08:00
default_hooks = dict(
# record the time of every iteration.
2022-05-23 16:43:23 +08:00
timer=dict(type='IterTimerHook'),
# print log every 100 iterations.
logger=dict(type='LoggerHook', interval=100),
2022-05-23 16:43:23 +08:00
# enable the parameter scheduler.
2022-05-23 16:43:23 +08:00
param_scheduler=dict(type='ParamSchedulerHook'),
# save checkpoint per epoch.
2022-05-23 16:43:23 +08:00
checkpoint=dict(type='CheckpointHook', interval=1),
# set sampler seed in distributed evrionment.
2022-05-23 16:43:23 +08:00
sampler_seed=dict(type='DistSamplerSeedHook'),
2022-06-06 10:32:22 +08:00
# validation results visualization, set True to enable it.
visualization=dict(type='VisualizationHook', enable=False),
2022-05-23 16:43:23 +08:00
)
# configure environment
2022-05-23 16:43:23 +08:00
env_cfg = dict(
# whether to enable cudnn benchmark
2022-05-23 16:43:23 +08:00
cudnn_benchmark=False,
# set multi process parameters
2022-05-23 16:43:23 +08:00
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
2022-05-23 16:43:23 +08:00
dist_cfg=dict(backend='nccl'),
)
# set visualizer
2022-05-30 11:11:44 +08:00
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(type='UniversalVisualizer', vis_backends=vis_backends)
2022-05-30 11:11:44 +08:00
# set log level
log_level = 'INFO'
2022-05-23 16:43:23 +08:00
# load from which checkpoint
load_from = None
2022-05-23 16:43:23 +08:00
# whether to resume training from the loaded checkpoint
2022-05-23 16:43:23 +08:00
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)