mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
137 lines
4.4 KiB
Python
137 lines
4.4 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import json
|
||
|
import os
|
||
|
import tempfile
|
||
|
from typing import List, Optional
|
||
|
|
||
|
from mmengine.evaluator import BaseMetric
|
||
|
from mmengine.utils import track_iter_progress
|
||
|
|
||
|
from mmpretrain.registry import METRICS
|
||
|
from mmpretrain.utils import require
|
||
|
|
||
|
try:
|
||
|
from pycocoevalcap.eval import COCOEvalCap
|
||
|
from pycocotools.coco import COCO
|
||
|
except ImportError:
|
||
|
COCOEvalCap = None
|
||
|
COCO = None
|
||
|
|
||
|
|
||
|
@METRICS.register_module()
|
||
|
class COCOCaption(BaseMetric):
|
||
|
"""Coco Caption evaluation wrapper.
|
||
|
|
||
|
Save the generated captions and transform into coco format.
|
||
|
Calling COCO API for caption metrics.
|
||
|
|
||
|
Args:
|
||
|
ann_file (str): the path for the COCO format caption ground truth
|
||
|
json file, load for evaluations.
|
||
|
collect_device (str): Device name used for collecting results from
|
||
|
different ranks during distributed training. Must be 'cpu' or
|
||
|
'gpu'. Defaults to 'cpu'.
|
||
|
prefix (str, optional): The prefix that will be added in the metric
|
||
|
names to disambiguate homonymous metrics of different evaluators.
|
||
|
If prefix is not provided in the argument, self.default_prefix
|
||
|
will be used instead. Should be modified according to the
|
||
|
`retrieval_type` for unambiguous results. Defaults to TR.
|
||
|
"""
|
||
|
|
||
|
@require('pycocoevalcap')
|
||
|
def __init__(self,
|
||
|
ann_file: str,
|
||
|
collect_device: str = 'cpu',
|
||
|
prefix: Optional[str] = None):
|
||
|
super().__init__(collect_device=collect_device, prefix=prefix)
|
||
|
self.ann_file = ann_file
|
||
|
|
||
|
def process(self, data_batch, data_samples):
|
||
|
"""Process one batch of data samples.
|
||
|
|
||
|
The processed results should be stored in ``self.results``, which will
|
||
|
be used to computed the metrics when all batches have been processed.
|
||
|
|
||
|
Args:
|
||
|
data_batch: A batch of data from the dataloader.
|
||
|
data_samples (Sequence[dict]): A batch of outputs from the model.
|
||
|
"""
|
||
|
|
||
|
for data_sample in data_samples:
|
||
|
result = dict()
|
||
|
|
||
|
result['caption'] = data_sample.get('pred_caption')
|
||
|
result['image_id'] = int(data_sample.get('image_id'))
|
||
|
|
||
|
# Save the result to `self.results`.
|
||
|
self.results.append(result)
|
||
|
|
||
|
def compute_metrics(self, results: List):
|
||
|
"""Compute the metrics from processed results.
|
||
|
|
||
|
Args:
|
||
|
results (dict): The processed results of each batch.
|
||
|
|
||
|
Returns:
|
||
|
Dict: The computed metrics. The keys are the names of the metrics,
|
||
|
and the values are corresponding results.
|
||
|
"""
|
||
|
# NOTICE: don't access `self.results` from the method.
|
||
|
|
||
|
with tempfile.TemporaryDirectory() as temp_dir:
|
||
|
|
||
|
eval_result_file = save_result(
|
||
|
result=results,
|
||
|
result_dir=temp_dir,
|
||
|
filename='m4-caption_pred',
|
||
|
remove_duplicate='image_id',
|
||
|
)
|
||
|
|
||
|
coco_val = coco_caption_eval(eval_result_file, self.ann_file)
|
||
|
|
||
|
return coco_val
|
||
|
|
||
|
|
||
|
def save_result(result, result_dir, filename, remove_duplicate=''):
|
||
|
"""Saving predictions as json file for evaluation."""
|
||
|
|
||
|
# combine results from all processes
|
||
|
result_new = []
|
||
|
|
||
|
if remove_duplicate:
|
||
|
result_new = []
|
||
|
id_list = []
|
||
|
for res in track_iter_progress(result):
|
||
|
if res[remove_duplicate] not in id_list:
|
||
|
id_list.append(res[remove_duplicate])
|
||
|
result_new.append(res)
|
||
|
result = result_new
|
||
|
|
||
|
final_result_file_url = os.path.join(result_dir, '%s.json' % filename)
|
||
|
print(f'result file saved to {final_result_file_url}')
|
||
|
json.dump(result, open(final_result_file_url, 'w'))
|
||
|
|
||
|
return final_result_file_url
|
||
|
|
||
|
|
||
|
def coco_caption_eval(results_file, ann_file):
|
||
|
"""Evaluation between gt json and prediction json files."""
|
||
|
# create coco object and coco_result object
|
||
|
coco = COCO(ann_file)
|
||
|
coco_result = coco.loadRes(results_file)
|
||
|
|
||
|
# create coco_eval object by taking coco and coco_result
|
||
|
coco_eval = COCOEvalCap(coco, coco_result)
|
||
|
|
||
|
# make sure the image ids are the same
|
||
|
coco_eval.params['image_id'] = coco_result.getImgIds()
|
||
|
|
||
|
# This will take some times at the first run
|
||
|
coco_eval.evaluate()
|
||
|
|
||
|
# print output evaluation scores
|
||
|
for metric, score in coco_eval.eval.items():
|
||
|
print(f'{metric}: {score:.3f}')
|
||
|
|
||
|
return coco_eval.eval
|