185 lines
6.9 KiB
Python
Raw Normal View History

[Feature] Support multiple multi-modal algorithms and inferencers. (#1561) * [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional
import torch
from mmengine.model import BaseModel
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
@MODELS.register_module()
class BlipCaption(BaseModel):
"""BLIP Caption.
Args:
vision_encoder (dict): Encoder for extracting image features.
decoder_head (dict): The decoder head module to forward and
calculate loss from processed features.
tokenizer: (Optional[dict]): The config for tokenizer.
Defaults to None.
prompt (str): Prompt used for training and eval.
Defaults to ''.
max_txt_len (int): Max text length of input text.
num_captions (int): Number of captions to be generated for each image.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MutimodalDataPreprocessor" as type.
See :class:`MutimodalDataPreprocessor` for more details.
Defaults to None.
init_cfg (Optional[dict]): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
vision_encoder: dict,
decoder_head: dict,
tokenizer: Optional[dict] = None,
prompt: str = '',
max_txt_len: int = 20,
num_captions: int = 1,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None):
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super(BlipCaption, self).__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
self.tokenizer = TOKENIZER.build(tokenizer)
self.visual_encoder = MODELS.build(vision_encoder)
self.seq_gen_head = MODELS.build(decoder_head)
self.prompt = prompt
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
self.max_txt_len = max_txt_len
self.num_captions = num_captions
def forward(
self,
images: torch.Tensor,
data_samples: Optional[List] = None,
mode: str = 'loss',
):
"""The unified entry for a forward process in both training and test.
The method should accept two modes: "predict" and "loss":
- "predict": Forward and return the predictions, which are fully
processed to a list of :obj:`DataSample`.
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
images (torch.Tensor): pre_processed img tensor (N, C, ...).
data_samples (List[DataSample], optional): Data samples with
additional infos.
mode (str): Return what kind of value. Defaults to 'loss'.
Returns:
The return type depends on ``mode``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def predict(self, images, data_samples=None, **kwargs):
"""Predict captions from a batch of inputs.
Args:
images (torch.Tensor): The input images tensor with shape
(N, C, ...) in general.
data_samples (List[DataSample], optional): The annotation
data of every samples. Defaults to None.
**kwargs: Other keyword arguments accepted by the ``predict``
method of :attr:`head`.
Returns:
List[DataSample]: Return list of data samples.
"""
# prepare inputs for decoder generation.
image_embeds = self.visual_encoder(images)[0]
image_embeds = torch.repeat_interleave(image_embeds, self.num_captions,
0)
prompt = [self.prompt] * image_embeds.size(0)
prompt = self.tokenizer(
prompt, padding='longest',
return_tensors='pt').to(image_embeds.device)
prompt.input_ids[:, 0] = self.tokenizer.bos_token_id
prompt.input_ids = prompt.input_ids[:, :-1]
decoder_out = self.seq_gen_head.predict(
input_ids=prompt.input_ids,
encoder_hidden_states=image_embeds,
sep_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
output_attentions=True,
return_dict_in_generate=True,
)
decode_tokens = self.tokenizer.batch_decode(
decoder_out.sequences, skip_special_tokens=True)
out_data_samples = []
if data_samples is None:
data_samples = [None for _ in range(len(decode_tokens))]
for data_sample, decode_token in zip(data_samples, decode_tokens):
if data_sample is None:
data_sample = DataSample()
data_sample.pred_caption = decode_token[len(self.prompt):]
out_data_samples.append(data_sample)
return out_data_samples
def loss(self, images, data_samples):
"""Calculate losses from a batch of images and data samples.
Args:
images (torch.Tensor): The input images tensor with shape
(N, C, ...) in general.
data_samples (List[ImageTextDataSample]): The annotation data of
every samples.
Returns:
dict[str, Tensor]: a dictionary of loss components.
"""
image_embeds = self.visual_encoder(images)[0]
raw_text = [self.prompt + ds.gt_caption for ds in data_samples]
text = self.tokenizer(
raw_text,
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors='pt',
).to(image_embeds.device)
text.input_ids[:, 0] = self.tokenizer.bos_token_id
# prepare targets for forwarding decoder
labels = text.input_ids.masked_fill(
text.input_ids == self.tokenizer.pad_token_id, -100)
labels[:, :self.prompt_length] = -100
# forward decoder
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
losses = self.seq_gen_head.loss(
input_ids=text.input_ids,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
labels=labels,
)
return losses