mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
185 lines
6.9 KiB
Python
185 lines
6.9 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
from typing import List, Optional
|
||
|
|
||
|
import torch
|
||
|
from mmengine.model import BaseModel
|
||
|
|
||
|
from mmpretrain.registry import MODELS, TOKENIZER
|
||
|
from mmpretrain.structures import DataSample
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class BlipCaption(BaseModel):
|
||
|
"""BLIP Caption.
|
||
|
|
||
|
Args:
|
||
|
vision_encoder (dict): Encoder for extracting image features.
|
||
|
decoder_head (dict): The decoder head module to forward and
|
||
|
calculate loss from processed features.
|
||
|
tokenizer: (Optional[dict]): The config for tokenizer.
|
||
|
Defaults to None.
|
||
|
prompt (str): Prompt used for training and eval.
|
||
|
Defaults to ''.
|
||
|
max_txt_len (int): Max text length of input text.
|
||
|
num_captions (int): Number of captions to be generated for each image.
|
||
|
data_preprocessor (Optional[dict]): The config for preprocessing input
|
||
|
data. If None or no specified type, it will use
|
||
|
"MutimodalDataPreprocessor" as type.
|
||
|
See :class:`MutimodalDataPreprocessor` for more details.
|
||
|
Defaults to None.
|
||
|
init_cfg (Optional[dict]): the config to control the initialization.
|
||
|
Defaults to None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
vision_encoder: dict,
|
||
|
decoder_head: dict,
|
||
|
tokenizer: Optional[dict] = None,
|
||
|
prompt: str = '',
|
||
|
max_txt_len: int = 20,
|
||
|
num_captions: int = 1,
|
||
|
data_preprocessor: Optional[dict] = None,
|
||
|
init_cfg: Optional[dict] = None):
|
||
|
if data_preprocessor is None:
|
||
|
data_preprocessor = {}
|
||
|
if isinstance(data_preprocessor, dict):
|
||
|
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
|
||
|
data_preprocessor = MODELS.build(data_preprocessor)
|
||
|
|
||
|
super(BlipCaption, self).__init__(
|
||
|
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
|
||
|
|
||
|
self.tokenizer = TOKENIZER.build(tokenizer)
|
||
|
self.visual_encoder = MODELS.build(vision_encoder)
|
||
|
self.seq_gen_head = MODELS.build(decoder_head)
|
||
|
|
||
|
self.prompt = prompt
|
||
|
self.prompt_length = len(self.tokenizer(self.prompt).input_ids) - 1
|
||
|
self.max_txt_len = max_txt_len
|
||
|
self.num_captions = num_captions
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
images: torch.Tensor,
|
||
|
data_samples: Optional[List] = None,
|
||
|
mode: str = 'loss',
|
||
|
):
|
||
|
"""The unified entry for a forward process in both training and test.
|
||
|
The method should accept two modes: "predict" and "loss":
|
||
|
|
||
|
- "predict": Forward and return the predictions, which are fully
|
||
|
processed to a list of :obj:`DataSample`.
|
||
|
- "loss": Forward and return a dict of losses according to the given
|
||
|
inputs and data samples.
|
||
|
|
||
|
Note that this method doesn't handle neither back propagation nor
|
||
|
optimizer updating, which are done in the :meth:`train_step`.
|
||
|
|
||
|
Args:
|
||
|
images (torch.Tensor): pre_processed img tensor (N, C, ...).
|
||
|
data_samples (List[DataSample], optional): Data samples with
|
||
|
additional infos.
|
||
|
mode (str): Return what kind of value. Defaults to 'loss'.
|
||
|
|
||
|
Returns:
|
||
|
The return type depends on ``mode``.
|
||
|
- If ``mode="loss"``, return a dict of tensor.
|
||
|
"""
|
||
|
if mode == 'loss':
|
||
|
return self.loss(images, data_samples)
|
||
|
elif mode == 'predict':
|
||
|
return self.predict(images, data_samples)
|
||
|
else:
|
||
|
raise RuntimeError(f'Invalid mode "{mode}".')
|
||
|
|
||
|
def predict(self, images, data_samples=None, **kwargs):
|
||
|
"""Predict captions from a batch of inputs.
|
||
|
|
||
|
Args:
|
||
|
images (torch.Tensor): The input images tensor with shape
|
||
|
(N, C, ...) in general.
|
||
|
data_samples (List[DataSample], optional): The annotation
|
||
|
data of every samples. Defaults to None.
|
||
|
**kwargs: Other keyword arguments accepted by the ``predict``
|
||
|
method of :attr:`head`.
|
||
|
|
||
|
Returns:
|
||
|
List[DataSample]: Return list of data samples.
|
||
|
"""
|
||
|
# prepare inputs for decoder generation.
|
||
|
image_embeds = self.visual_encoder(images)[0]
|
||
|
image_embeds = torch.repeat_interleave(image_embeds, self.num_captions,
|
||
|
0)
|
||
|
|
||
|
prompt = [self.prompt] * image_embeds.size(0)
|
||
|
prompt = self.tokenizer(
|
||
|
prompt, padding='longest',
|
||
|
return_tensors='pt').to(image_embeds.device)
|
||
|
|
||
|
prompt.input_ids[:, 0] = self.tokenizer.bos_token_id
|
||
|
prompt.input_ids = prompt.input_ids[:, :-1]
|
||
|
|
||
|
decoder_out = self.seq_gen_head.predict(
|
||
|
input_ids=prompt.input_ids,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
sep_token_id=self.tokenizer.sep_token_id,
|
||
|
pad_token_id=self.tokenizer.pad_token_id,
|
||
|
output_attentions=True,
|
||
|
return_dict_in_generate=True,
|
||
|
)
|
||
|
|
||
|
decode_tokens = self.tokenizer.batch_decode(
|
||
|
decoder_out.sequences, skip_special_tokens=True)
|
||
|
|
||
|
out_data_samples = []
|
||
|
if data_samples is None:
|
||
|
data_samples = [None for _ in range(len(decode_tokens))]
|
||
|
|
||
|
for data_sample, decode_token in zip(data_samples, decode_tokens):
|
||
|
if data_sample is None:
|
||
|
data_sample = DataSample()
|
||
|
data_sample.pred_caption = decode_token[len(self.prompt):]
|
||
|
out_data_samples.append(data_sample)
|
||
|
|
||
|
return out_data_samples
|
||
|
|
||
|
def loss(self, images, data_samples):
|
||
|
"""Calculate losses from a batch of images and data samples.
|
||
|
|
||
|
Args:
|
||
|
images (torch.Tensor): The input images tensor with shape
|
||
|
(N, C, ...) in general.
|
||
|
data_samples (List[ImageTextDataSample]): The annotation data of
|
||
|
every samples.
|
||
|
|
||
|
Returns:
|
||
|
dict[str, Tensor]: a dictionary of loss components.
|
||
|
"""
|
||
|
image_embeds = self.visual_encoder(images)[0]
|
||
|
raw_text = [self.prompt + ds.gt_caption for ds in data_samples]
|
||
|
|
||
|
text = self.tokenizer(
|
||
|
raw_text,
|
||
|
padding='longest',
|
||
|
truncation=True,
|
||
|
max_length=self.max_txt_len,
|
||
|
return_tensors='pt',
|
||
|
).to(image_embeds.device)
|
||
|
text.input_ids[:, 0] = self.tokenizer.bos_token_id
|
||
|
|
||
|
# prepare targets for forwarding decoder
|
||
|
labels = text.input_ids.masked_fill(
|
||
|
text.input_ids == self.tokenizer.pad_token_id, -100)
|
||
|
labels[:, :self.prompt_length] = -100
|
||
|
# forward decoder
|
||
|
image_atts = torch.ones(
|
||
|
image_embeds.size()[:-1], dtype=torch.long).to(image_embeds.device)
|
||
|
|
||
|
losses = self.seq_gen_head.loss(
|
||
|
input_ids=text.input_ids,
|
||
|
encoder_hidden_states=image_embeds,
|
||
|
encoder_attention_mask=image_atts,
|
||
|
labels=labels,
|
||
|
)
|
||
|
return losses
|