mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
266 lines
10 KiB
Python
266 lines
10 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
from mmengine.model import BaseModel
|
||
|
|
||
|
from mmpretrain.registry import MODELS, TOKENIZER
|
||
|
from mmpretrain.structures import DataSample
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class BlipVQA(BaseModel):
|
||
|
"""BLIP VQA.
|
||
|
|
||
|
Args:
|
||
|
tokenizer: (dict): The config for tokenizer.
|
||
|
vision_backbone (dict): Encoder for extracting image features.
|
||
|
multimodal_backbone (dict): Backbone for extracting
|
||
|
multi-modal features. We apply this part as VQA fusion module.
|
||
|
head (dict): The head module to calculate
|
||
|
loss from processed features.
|
||
|
data_preprocessor (Optional[dict]): The config for preprocessing input
|
||
|
data. If None or no specified type, it will use
|
||
|
`MutimodalDataPreprocessor` as type.
|
||
|
See :class:`MutimodalDataPreprocessor` for more details.
|
||
|
Defaults to None.
|
||
|
init_cfg (Optional[dict]): the config to control the initialization.
|
||
|
Defaults to None.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
tokenizer: dict,
|
||
|
vision_backbone: dict,
|
||
|
multimodal_backbone: dict,
|
||
|
head: dict,
|
||
|
data_preprocessor: Optional[dict] = None,
|
||
|
init_cfg: Optional[dict] = None):
|
||
|
|
||
|
if data_preprocessor is None:
|
||
|
data_preprocessor = {}
|
||
|
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
|
||
|
data_preprocessor = MODELS.build(data_preprocessor)
|
||
|
|
||
|
super(BlipVQA, self).__init__(
|
||
|
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
|
||
|
|
||
|
self.tokenizer = TOKENIZER.build(tokenizer)
|
||
|
self.vision_backbone = MODELS.build(vision_backbone)
|
||
|
self.multimodal_backbone = MODELS.build(multimodal_backbone)
|
||
|
self.vqa_head = MODELS.build(head)
|
||
|
|
||
|
@property
|
||
|
def device(self):
|
||
|
return next(self.parameters()).device
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
images: torch.Tensor,
|
||
|
data_samples: Optional[List[DataSample]] = None,
|
||
|
mode: str = 'loss',
|
||
|
):
|
||
|
"""The unified entry for a forward process in both training and test.
|
||
|
|
||
|
- "loss": For training. Forward and return a dict of losses according
|
||
|
to the given inputs and data samples. Note that this method doesn't
|
||
|
handle neither back propagation nor optimizer updating, which are
|
||
|
done in the :meth:`train_step`.
|
||
|
- "predict": For testing. Forward and return a list of data_sample that
|
||
|
contains pred_answer for each question.
|
||
|
|
||
|
Args:
|
||
|
images (Tensor): A batch of images. The shape of it should be
|
||
|
(B, C, H, W) for images and (B, T, C, H, W) for videos.
|
||
|
data_samples (List[DataSample], optional): The annotation data of
|
||
|
every samples. Required when ``mode="loss"``. Defaults to None.
|
||
|
mode (str): Return what kind of value. Defaults to 'loss'.
|
||
|
|
||
|
Returns:
|
||
|
The return type depends on ``mode``.
|
||
|
- If ``mode="loss"``, return a dict of tensor.
|
||
|
- If ``mode="predict"``, return a list of `DataSample`
|
||
|
"""
|
||
|
|
||
|
if mode == 'loss':
|
||
|
return self.loss(images, data_samples)
|
||
|
elif mode == 'predict':
|
||
|
return self.predict(images, data_samples)
|
||
|
else:
|
||
|
raise RuntimeError(f'Invalid mode "{mode}".')
|
||
|
|
||
|
def extract_feat(self, images: torch.Tensor) -> torch.Tensor:
|
||
|
"""Extract features from the input tensor with shape (N, C, ..).
|
||
|
|
||
|
Args:
|
||
|
images (Tensor): A batch of images. The shape of it should be
|
||
|
(B, C, H, W) for images and (B, T, C, H, W) for videos.
|
||
|
|
||
|
Returns:
|
||
|
visual_embeds (Tensor): The output features.
|
||
|
"""
|
||
|
# extract visual feature
|
||
|
if images.ndim == 4:
|
||
|
visual_embeds = self.vision_backbone(images)[0]
|
||
|
elif images.ndim == 5:
|
||
|
# [batch, T, C, H, W] -> [batch * T, C, H, W]
|
||
|
bs = images.size(0)
|
||
|
images = images.reshape(-1, *images.shape[2:])
|
||
|
visual_embeds = self.vision_backbone(images)[0]
|
||
|
# [batch * num_segs, L, dim] -> [batch, num_segs * L, dim]
|
||
|
visual_embeds = visual_embeds.reshape(bs, -1,
|
||
|
*visual_embeds.shape[2:])
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f'Images with {images.ndim} dims is not supported.')
|
||
|
return visual_embeds
|
||
|
|
||
|
def loss(
|
||
|
self,
|
||
|
images: torch.Tensor,
|
||
|
data_samples: Optional[List[DataSample]] = None,
|
||
|
) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
|
||
|
"""generate train_loss from the input tensor and data_samples.
|
||
|
|
||
|
Args:
|
||
|
images (Tensor): A batch of images. The shape of it should be
|
||
|
(B, C, H, W) for images and (B, T, C, H, W) for videos.
|
||
|
data_samples (List[DataSample], optional): The annotation
|
||
|
data of every samples.
|
||
|
|
||
|
Returns:
|
||
|
Dict[torch.Tensor]: The losses features.
|
||
|
"""
|
||
|
visual_embeds = self.extract_feat(images)
|
||
|
image_atts = torch.ones(
|
||
|
visual_embeds.size()[:-1], dtype=torch.long).to(self.device)
|
||
|
|
||
|
questions = []
|
||
|
for sample in data_samples:
|
||
|
questions.append(sample.get('question'))
|
||
|
questions = self.tokenizer(
|
||
|
questions, padding='longest', return_tensors='pt').to(self.device)
|
||
|
|
||
|
questions.input_ids[:, 0] = \
|
||
|
self.tokenizer.additional_special_tokens_ids[0]
|
||
|
|
||
|
# multimodal fusion
|
||
|
multimodal_embeds = self.multimodal_backbone(
|
||
|
questions.input_ids,
|
||
|
attention_mask=questions.attention_mask,
|
||
|
encoder_hidden_states=visual_embeds,
|
||
|
encoder_attention_mask=image_atts,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
# put answer from data_samples into tensor form
|
||
|
answer_raw_text = []
|
||
|
for sample in data_samples:
|
||
|
answer_raw_text.extend(sample.gt_answer)
|
||
|
answer = self.tokenizer(
|
||
|
answer_raw_text, padding='longest',
|
||
|
return_tensors='pt').to(self.device)
|
||
|
answer_targets = answer.input_ids.masked_fill(
|
||
|
answer.input_ids == self.tokenizer.pad_token_id, -100)
|
||
|
for sample in data_samples:
|
||
|
# follow BLIP setting, set answer_weight to 0.2 for VG dataset.
|
||
|
if not hasattr(sample, 'gt_answer_weight'):
|
||
|
sample.gt_answer_weight = torch.tensor([0.2])
|
||
|
else:
|
||
|
sample.gt_answer_weight = torch.tensor(sample.gt_answer_weight)
|
||
|
answer_weight = torch.cat(
|
||
|
[sample.gt_answer_weight for sample in data_samples],
|
||
|
dim=0).to(self.device)
|
||
|
answer_count = torch.tensor(
|
||
|
[len(sample.gt_answer) for sample in data_samples]).to(self.device)
|
||
|
|
||
|
question_states, question_atts = [], []
|
||
|
for b, n in enumerate(answer_count):
|
||
|
question_states += [multimodal_embeds.last_hidden_state[b]] * n
|
||
|
question_atts += [questions.attention_mask[b]] * n
|
||
|
|
||
|
question_states = torch.stack(question_states, dim=0).to(self.device)
|
||
|
question_atts = torch.stack(question_atts, dim=0).to(self.device)
|
||
|
|
||
|
head_feats = dict(
|
||
|
answer_input_ids=answer.input_ids,
|
||
|
answer_attention_mask=answer.attention_mask,
|
||
|
answer_weight=answer_weight,
|
||
|
answer_targets=answer_targets,
|
||
|
question_states=question_states,
|
||
|
question_atts=question_atts,
|
||
|
batch_size=len(data_samples),
|
||
|
)
|
||
|
|
||
|
losses = self.vqa_head.loss(head_feats)
|
||
|
|
||
|
return losses
|
||
|
|
||
|
def predict(
|
||
|
self,
|
||
|
images: torch.Tensor,
|
||
|
data_samples: Optional[List[DataSample]] = None,
|
||
|
):
|
||
|
"""update data_samples that contain pred_answer for each question.
|
||
|
|
||
|
Args:
|
||
|
images (Tensor): A batch of images. The shape of it should be
|
||
|
(B, C, H, W) for images and (B, T, C, H, W) for videos.
|
||
|
data_samples (List[DataSample], optional): The annotation
|
||
|
data of every samples.
|
||
|
|
||
|
Returns:
|
||
|
Dict[torch.Tensor]: The losses features.
|
||
|
"""
|
||
|
visual_embeds = self.extract_feat(images)
|
||
|
image_atts = torch.ones(
|
||
|
visual_embeds.size()[:-1], dtype=torch.long).to(self.device)
|
||
|
|
||
|
questions = []
|
||
|
for sample in data_samples:
|
||
|
questions.append(sample.get('question'))
|
||
|
questions = self.tokenizer(
|
||
|
questions, padding='longest', return_tensors='pt').to(self.device)
|
||
|
|
||
|
questions.input_ids[:, 0] = \
|
||
|
self.tokenizer.additional_special_tokens_ids[0]
|
||
|
|
||
|
# multimodal fusion
|
||
|
multimodal_embeds = self.multimodal_backbone(
|
||
|
questions.input_ids,
|
||
|
attention_mask=questions.attention_mask,
|
||
|
encoder_hidden_states=visual_embeds,
|
||
|
encoder_attention_mask=image_atts,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
|
||
|
if self.vqa_head.inference_method == 'rank':
|
||
|
answer_candidates = self.tokenizer(
|
||
|
self.vqa_head.answer_list,
|
||
|
padding='longest',
|
||
|
return_tensors='pt').to(self.device)
|
||
|
answer_candidates.input_ids[:, 0] = self.tokenizer.bos_token_id
|
||
|
elif self.vqa_head.inference_method == 'generate':
|
||
|
answer_candidates = None
|
||
|
|
||
|
head_feats = dict(
|
||
|
multimodal_embeds=multimodal_embeds.last_hidden_state,
|
||
|
question_atts=questions.attention_mask,
|
||
|
answer_candidates=answer_candidates,
|
||
|
bos_token_id=self.tokenizer.bos_token_id,
|
||
|
sep_token_id=self.tokenizer.sep_token_id,
|
||
|
pad_token_id=self.tokenizer.pad_token_id,
|
||
|
)
|
||
|
|
||
|
if self.vqa_head.inference_method == 'rank':
|
||
|
answers = self.vqa_head.predict(head_feats)
|
||
|
for answer, data_sample in zip(answers, data_samples):
|
||
|
data_sample.pred_answer = answer
|
||
|
|
||
|
elif self.vqa_head.inference_method == 'generate':
|
||
|
outputs = self.vqa_head.predict(head_feats)
|
||
|
for output, data_sample in zip(outputs, data_samples):
|
||
|
data_sample.pred_answer = self.tokenizer.decode(
|
||
|
output, skip_special_tokens=True)
|
||
|
|
||
|
return data_samples
|