323 lines
12 KiB
Python
Raw Normal View History

[Feature] Support multiple multi-modal algorithms and inferencers. (#1561) * [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import re
from typing import List, Optional
import torch
from mmengine.model import BaseModel
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from .modules import PerceiverResampler
from .utils import ExtendModule
@MODELS.register_module()
class Flamingo(BaseModel):
"""The Open Flamingo model for multiple tasks.
Args:
vision_encoder (dict): The config of the vision encoder.
lang_encoder (dict): The config of the language encoder.
tokenizer (dict): The tokenizer to encode the text.
task (int): The task to perform prediction.
zeroshot_prompt (str): Prompt used for zero-shot inference.
Defaults to '<image>Output:'.
shot_prompt_tmpl (str): Prompt used for few-shot inference.
2023-07-20 10:21:15 +08:00
Defaults to ``<image>Output:{caption}<|endofchunk|>``.
[Feature] Support multiple multi-modal algorithms and inferencers. (#1561) * [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00
final_prompt_tmpl (str): Final part of prompt used for inference.
Defaults to '<image>Output:'.
generation_cfg (dict): The extra generation config, accept the keyword
arguments of [~`transformers.GenerationConfig`].
Defaults to an empty dict.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MutimodalDataPreprocessor" as type.
See :class:`MutimodalDataPreprocessor` for more details.
Defaults to None.
init_cfg (dict, optional): The initialization config. Defaults to None.
"""
support_tasks = {'caption', 'vqa'}
_no_split_modules = [
'TransformerEncoderLayer', 'PerceiverAttention',
'GatedCrossAttentionBlock', 'FlamingoLayer'
]
def __init__(
self,
vision_encoder: dict,
lang_encoder: dict,
tokenizer: dict,
task: str = 'caption',
zeroshot_prompt: str = '<image>Output:',
shot_prompt_tmpl: str = '<image>Output:{caption}<|endofchunk|>',
final_prompt_tmpl: str = '<image>Output:',
generation_cfg: dict = dict(),
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None):
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super().__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
if task not in self.support_tasks:
raise ValueError(f'Unsupported task {task}, please select '
f'the task from {self.support_tasks}.')
self.task = task
# init tokenizer
self.tokenizer = TOKENIZER.build(tokenizer)
# add Flamingo special tokens to the tokenizer
self.tokenizer.add_special_tokens(
{'additional_special_tokens': ['<|endofchunk|>', '<image>']})
self.tokenizer.bos_token_id = 1
if self.tokenizer.pad_token is None:
# Issue: GPT models don't have a pad token, which we use to
# modify labels for the loss.
self.tokenizer.add_special_tokens({'pad_token': '<PAD>'})
# Template to format the prompt input
self.zeroshot_prompt = zeroshot_prompt
self.shot_prompt_tmpl = shot_prompt_tmpl
self.final_prompt_tmpl = final_prompt_tmpl
# init vision encoder related modules
vision_encoder_weight = vision_encoder.pop('pretrained', None)
self.vision_encoder = MODELS.build(vision_encoder)
if vision_encoder_weight is not None:
from mmengine.runner.checkpoint import load_checkpoint
load_checkpoint(
self.vision_encoder,
vision_encoder_weight,
map_location='cpu',
revise_keys=[(r'^backbone\.', '')],
)
self.perceiver = PerceiverResampler(dim=self.vision_encoder.embed_dims)
# init language encoder related modules
self.lang_encoder = ExtendModule(**lang_encoder)
self.lang_encoder.resize_token_embeddings(len(self.tokenizer))
self.lang_encoder.media_token_id = self.tokenizer.encode('<image>')[-1]
# other necessary parameters
self.eoc_token_id = self.tokenizer.encode('<|endofchunk|>')[-1]
self.generation_cfg = {
'num_beams': 1,
'max_new_tokens': None,
'temperature': 1.0,
'top_k': 0,
'top_p': 1.0,
'no_repeat_ngram_size': 0,
'prefix_allowed_tokens_fn': None,
'length_penalty': 1.0,
'num_return_sequences': 1,
'do_sample': False,
'early_stopping': False,
**generation_cfg,
}
if hasattr(self, 'register_load_state_dict_post_hook'):
self.register_load_state_dict_post_hook(self._load_adapter_hook)
def forward(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
mode: str = 'loss',
):
"""The unified entry for a forward process in both training and test.
The method should accept only one mode "loss":
- "loss": Forward and return a dict of losses according to the given
inputs and data samples.
Note that this method doesn't handle neither back propagation nor
optimizer updating, which are done in the :meth:`train_step`.
Args:
images (torch.Tensor): The input image tensor with different ndim
according to the inputs.
data_samples (List[DataSample], optional): The annotation
data of every samples. It's required if ``mode="loss"``.
Defaults to None.
mode (str): Return what kind of value. Defaults to 'loss'.
Returns:
The return type depends on ``mode``.
- If ``mode="loss"``, return a dict of tensor.
"""
if mode == 'loss':
return self.loss(images, data_samples)
elif mode == 'predict':
return self.predict(images, data_samples)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def extract_vision_feats(self, images: torch.Tensor) -> torch.Tensor:
"""Extract vision features.
Args:
images (torch.Tensor): For zero-shot, the input images tensor is
with shape (B, C, H, W), for few-shot, which is
(B, T_img, C, H, W) in general. Images in the same chunk
are collated along T_img. Video data is not supported yet.
Returns:
torch.Tensor: Return extracted features.
"""
if images.ndim == 4:
# (B, C, H, W) -> (B, 1, C, H, W) for zero-shot.
images = images.unsqueeze(1)
b, T = images.shape[:2]
# b T c h w -> (b T) c h w
images = images.view(b * T, *images.shape[-3:])
with torch.no_grad():
vision_feats = self.vision_encoder(images)[-1][:, 1:]
# (b T F) v d -> b T F v d Only support F=1 here
vision_feats = vision_feats.view(b, T, 1, *vision_feats.shape[-2:])
vision_feats = self.perceiver(vision_feats) # reshapes to (b, T, n, d)
return vision_feats
def predict(self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
**generation_cfg):
"""Predict generation results from a batch of inputs.
Args:
images (torch.Tensor): For zero-shot, the input images tensor is
with shape (B, C, H, W), for few-shot, which is
(B, T_img, C, H, W) in general. Images in the same chunk
are collated along T_img. Video data is not supported yet.
data_samples (List[DataSample], optional): The annotation
data of every samples. Defaults to None.
**generation_cfg: Other keyword arguments accepted by the
``generate`` method of :attr:`lang_encoder`.
Returns:
List[DataSample]: Return list of data samples.
"""
# generation_cfg in prediction should be dominant
generation_cfg = {**self.generation_cfg, **generation_cfg}
num_beams = generation_cfg['num_beams']
if num_beams > 1:
images = images.repeat_interleave(num_beams, dim=0)
# extra vision feats and set as language condition feats
vision_x = self.extract_vision_feats(images)
for layer in self.lang_encoder._get_decoder_layers():
layer.condition_vis_x(vision_x)
input_text = self.preprocess_text(data_samples, device=images.device)
outputs = self.lang_encoder.generate(
input_text.input_ids,
attention_mask=input_text.attention_mask,
eos_token_id=self.eoc_token_id,
**generation_cfg)
# clear conditioned layers for language models
self.lang_encoder.clear_conditioned_layers()
# remove prefix
outputs = outputs[:, len(input_text.input_ids[0]):]
return self.post_process(outputs, data_samples)
def preprocess_text(self, data_samples: List[DataSample],
device: torch.device) -> List[DataSample]:
"""Preprocess text in advance before fed into language model.
Args:
data_samples (List[DataSample]): The annotation
data of every samples. Defaults to None.
device (torch.device): Device for text to put on.
Returns:
List[DataSample]: Return list of data samples.
"""
prompts = []
for sample in data_samples:
if 'shots' in sample:
# few-shot
shot_prompt = ''.join([
self.shot_prompt_tmpl.format(**shot)
for shot in sample.get('shots')
])
else:
# zero-shot
shot_prompt = self.zeroshot_prompt
# add final prompt
final_prompt = self.final_prompt_tmpl.format(**sample.to_dict())
prompts.append(shot_prompt + final_prompt)
self.tokenizer.padding_side = 'left'
input_text = self.tokenizer(
prompts,
padding='longest',
truncation=True,
return_tensors='pt',
max_length=2000,
).to(device)
return input_text
def post_process(
self, outputs: torch.Tensor,
data_samples: Optional[List[DataSample]]) -> List[DataSample]:
"""Perform post process for outputs for different task.
Args:
outputs (torch.Tensor): The generated outputs.
data_samples (List[DataSample], optional): The annotation
data of every samples.
Returns:
List[DataSample]: Return list of data samples.
"""
outputs = self.tokenizer.batch_decode(
outputs, skip_special_tokens=True)
if data_samples is None:
data_samples = [DataSample() for _ in range(len(outputs))]
for output, data_sample in zip(outputs, data_samples):
# remove text pattern
if self.task == 'caption':
data_sample.pred_caption = re.split('Output', output,
1)[0].replace('"', '')
elif self.task == 'vqa':
data_sample.pred_answer = re.split('Question|Answer', output,
1)[0]
return data_samples
@staticmethod
def _load_adapter_hook(module, incompatible_keys):
"""Avoid warning missing keys except adapter keys."""
adapter_patterns = [
'^perceiver',
'lang_encoder.*embed_tokens',
'lang_encoder.*gated_cross_attn_layers',
'lang_encoder.*rotary_emb',
]
for key in list(incompatible_keys.missing_keys):
if not any(re.match(pattern, key) for pattern in adapter_patterns):
incompatible_keys.missing_keys.remove(key)
for key in list(incompatible_keys.unexpected_keys):
if 'position_ids' in key:
incompatible_keys.unexpected_keys.remove(key)
if 'lang_encoder.gated_cross_attn_layers' in key:
incompatible_keys.unexpected_keys.remove(key)