mmclassification/mmcls/models/losses/accuracy.py

91 lines
2.8 KiB
Python
Raw Normal View History

import numpy as np
import torch
import torch.nn as nn
def accuracy_numpy(pred, target, topk):
res = []
maxk = max(topk)
num = pred.shape[0]
pred_label = pred.argsort(axis=1)[:, -maxk:][:, ::-1]
for k in topk:
correct_k = np.logical_or.reduce(
pred_label[:, :k] == target.reshape(-1, 1), axis=1)
res.append(correct_k.sum() * 100. / num)
return res
def accuracy_torch(pred, target, topk=1):
res = []
maxk = max(topk)
num = pred.size(0)
_, pred_label = pred.topk(maxk, dim=1)
pred_label = pred_label.t()
correct = pred_label.eq(target.view(1, -1).expand_as(pred_label))
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100. / num))
return res
def accuracy(pred, target, topk=1):
"""Calculate accuracy according to the prediction and target
Args:
pred (torch.Tensor | np.array): The model prediction.
target (torch.Tensor | np.array): The target of each prediction
topk (int | tuple[int], optional): If the predictions in ``topk``
matches the target, the predictions will be regarded as
correct ones. Defaults to 1.
Returns:
float | tuple[float]: If the input ``topk`` is a single integer,
the function will return a single float as accuracy. If
``topk`` is a tuple containing multiple integers, the
function will return a tuple containing accuracies of
each ``topk`` number.
"""
assert isinstance(topk, (int, tuple))
if isinstance(topk, int):
topk = (topk, )
return_single = True
else:
return_single = False
if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor):
res = accuracy_torch(pred, target, topk)
elif isinstance(pred, np.ndarray) and isinstance(target, np.ndarray):
res = accuracy_numpy(pred, target, topk)
else:
raise TypeError('pred and target should both be'
'torch.Tensor or np.ndarray')
return res[0] if return_single else res
class Accuracy(nn.Module):
def __init__(self, topk=(1, )):
"""Module to calculate the accuracy
Args:
topk (tuple, optional): The criterion used to calculate the
accuracy. Defaults to (1,).
"""
super().__init__()
self.topk = topk
def forward(self, pred, target):
"""Forward function to calculate accuracy
Args:
pred (torch.Tensor): Prediction of models.
target (torch.Tensor): Target for each prediction.
Returns:
tuple[float]: The accuracies under different topk criterions.
"""
return accuracy(pred, target, self.topk)