2020-05-21 21:21:43 +08:00
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
|
|
|
|
import mmcv
|
|
|
|
import torch
|
|
|
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
|
|
|
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
|
|
|
|
|
2020-05-27 11:37:16 +08:00
|
|
|
from mmcls.apis import multi_gpu_test, single_gpu_test
|
|
|
|
from mmcls.core import wrap_fp16_model
|
2020-05-21 21:21:43 +08:00
|
|
|
from mmcls.datasets import build_dataloader, build_dataset
|
|
|
|
from mmcls.models import build_model
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description='mmcls test model')
|
|
|
|
parser.add_argument('config', help='test config file path')
|
|
|
|
parser.add_argument('checkpoint', help='checkpoint file')
|
|
|
|
parser.add_argument('--out', help='output result file')
|
|
|
|
parser.add_argument(
|
|
|
|
'--eval',
|
|
|
|
type=str,
|
|
|
|
nargs='+',
|
|
|
|
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
|
|
|
|
help='eval types')
|
|
|
|
parser.add_argument(
|
|
|
|
'--gpu_collect',
|
|
|
|
action='store_true',
|
|
|
|
help='whether to use gpu to collect results')
|
|
|
|
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
|
|
|
|
parser.add_argument(
|
|
|
|
'--launcher',
|
|
|
|
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
|
|
|
default='none',
|
|
|
|
help='job launcher')
|
|
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
|
|
args = parser.parse_args()
|
|
|
|
if 'LOCAL_RANK' not in os.environ:
|
|
|
|
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
|
|
|
|
cfg = mmcv.Config.fromfile(args.config)
|
|
|
|
# set cudnn_benchmark
|
|
|
|
if cfg.get('cudnn_benchmark', False):
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
cfg.model.pretrained = None
|
|
|
|
cfg.data.test.test_mode = True
|
|
|
|
|
|
|
|
# init distributed env first, since logger depends on the dist info.
|
|
|
|
if args.launcher == 'none':
|
|
|
|
distributed = False
|
|
|
|
else:
|
|
|
|
distributed = True
|
|
|
|
init_dist(args.launcher, **cfg.dist_params)
|
|
|
|
|
|
|
|
# build the dataloader
|
|
|
|
# TODO: support multiple images per gpu (only minor changes are needed)
|
|
|
|
dataset = build_dataset(cfg.data.test)
|
|
|
|
data_loader = build_dataloader(
|
|
|
|
dataset,
|
|
|
|
imgs_per_gpu=1,
|
|
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
|
|
dist=distributed,
|
|
|
|
shuffle=False)
|
|
|
|
|
|
|
|
# build the model and load checkpoint
|
|
|
|
model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
|
|
|
|
fp16_cfg = cfg.get('fp16', None)
|
|
|
|
if fp16_cfg is not None:
|
|
|
|
wrap_fp16_model(model)
|
|
|
|
_ = load_checkpoint(model, args.checkpoint, map_location='cpu')
|
|
|
|
|
|
|
|
if not distributed:
|
|
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
|
|
outputs = single_gpu_test(model, data_loader)
|
|
|
|
else:
|
|
|
|
model = MMDistributedDataParallel(
|
|
|
|
model.cuda(),
|
|
|
|
device_ids=[torch.cuda.current_device()],
|
|
|
|
broadcast_buffers=False)
|
|
|
|
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
|
|
|
|
args.gpu_collect)
|
|
|
|
|
|
|
|
rank, _ = get_dist_info()
|
|
|
|
if args.out and rank == 0:
|
|
|
|
print(f'\nwriting results to {args.out}')
|
|
|
|
mmcv.dump(outputs, args.out)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|