mmclassification/mmpretrain/apis/image_classification.py

229 lines
8.4 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
from pathlib import Path
from typing import Callable, List, Optional, Union
2020-05-21 21:21:43 +08:00
import numpy as np
import torch
from mmcv.image import imread
from mmengine.config import Config
from mmengine.dataset import Compose, default_collate
from mmengine.device import get_device
from mmengine.infer import BaseInferencer
from mmengine.model import BaseModel
from mmengine.runner import load_checkpoint
2020-05-21 21:21:43 +08:00
from mmpretrain.registry import TRANSFORMS
from mmpretrain.structures import DataSample
from .model import get_model, list_models
ModelType = Union[BaseModel, str, Config]
InputType = Union[str, np.ndarray, list]
class ImageClassificationInferencer(BaseInferencer):
"""The inferencer for image classification.
Args:
model (BaseModel | str | Config): A model name or a path to the confi
file, or a :obj:`BaseModel` object. The model name can be found
by ``ImageClassificationInferencer.list_models()`` and you can also
query it in :doc:`/modelzoo_statistics`.
weights (str, optional): Path to the checkpoint. If None, it will try
to find a pre-defined weight from the model you specified
(only work if the ``model`` is a model name). Defaults to None.
device (str, optional): Device to run inference. If None, use CPU or
the device of the input model. Defaults to None.
Example:
1. Use a pre-trained model in MMClassification to inference an image.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
>>> inferencer('demo/demo.JPEG')
[{'pred_score': array([...]),
'pred_label': 65,
'pred_score': 0.6649367809295654,
'pred_class': 'sea snake'}]
2. Use a config file and checkpoint to inference multiple images on GPU,
and save the visualization results in a folder.
>>> from mmpretrain import ImageClassificationInferencer
>>> inferencer = ImageClassificationInferencer(
model='configs/resnet/resnet50_8xb32_in1k.py',
weights='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
device='cuda')
>>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
""" # noqa: E501
visualize_kwargs: set = {
'rescale_factor', 'draw_score', 'show', 'show_dir'
}
def __init__(
self,
model: ModelType,
pretrained: Union[bool, str] = True,
device: Union[str, torch.device, None] = None,
classes=None,
) -> None:
device = device or get_device()
if isinstance(model, BaseModel):
if isinstance(pretrained, str):
load_checkpoint(model, pretrained, map_location='cpu')
model = model.to(device)
else:
model = get_model(model, pretrained, device)
model.eval()
self.config = model.config
self.model = model
self.pipeline = self._init_pipeline(self.config)
self.collate_fn = default_collate
self.visualizer = None
if classes is not None:
self.classes = classes
else:
self.classes = getattr(model, 'dataset_meta', {}).get('classes')
def __call__(self,
inputs: InputType,
return_datasamples: bool = False,
batch_size: int = 1,
**kwargs) -> dict:
"""Call the inferencer.
Args:
inputs (str | array | list): The image path or array, or a list of
images.
return_datasamples (bool): Whether to return results as
:obj:`DataSample`. Defaults to False.
batch_size (int): Batch size. Defaults to 1.
rescale_factor (float, optional): Rescale the image by the rescale
factor for visualization. This is helpful when the image is too
large or too small for visualization. Defaults to None.
draw_score (bool): Whether to draw the prediction scores
of prediction categories. Defaults to True.
show (bool): Whether to display the visualization result in a
window. Defaults to False.
show_dir (str, optional): If not None, save the visualization
results in the specified directory. Defaults to None.
Returns:
list: The inference results.
"""
return super().__call__(inputs, return_datasamples, batch_size,
**kwargs)
def _init_pipeline(self, cfg: Config) -> Callable:
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
if test_pipeline_cfg[0]['type'] == 'LoadImageFromFile':
# Image loading is finished in `self.preprocess`.
test_pipeline_cfg = test_pipeline_cfg[1:]
test_pipeline = Compose(
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
return test_pipeline
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
def load_image(input_):
img = imread(input_)
if img is None:
raise ValueError(f'Failed to read image {input_}.')
return dict(
img=img,
img_shape=img.shape[:2],
ori_shape=img.shape[:2],
)
pipeline = Compose([load_image, self.pipeline])
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
yield from map(self.collate_fn, chunked_data)
def visualize(self,
ori_inputs: List[InputType],
preds: List[DataSample],
show: bool = False,
rescale_factor: Optional[float] = None,
draw_score=True,
show_dir=None):
if not show and show_dir is None:
return None
if self.visualizer is None:
from mmpretrain.visualization import ClsVisualizer
self.visualizer = ClsVisualizer()
if self.classes is not None:
self.visualizer._dataset_meta = dict(classes=self.classes)
visualization = []
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
image = imread(input_)
if isinstance(input_, str):
# The image loaded from path is BGR format.
image = image[..., ::-1]
name = Path(input_).stem
else:
name = str(i)
if show_dir is not None:
show_dir = Path(show_dir)
show_dir.mkdir(exist_ok=True)
out_file = str((show_dir / name).with_suffix('.png'))
else:
out_file = None
self.visualizer.add_datasample(
name,
image,
data_sample,
show=show,
rescale_factor=rescale_factor,
draw_gt=False,
draw_pred=True,
draw_score=draw_score,
out_file=out_file)
visualization.append(self.visualizer.get_image())
if show:
self.visualizer.close()
return visualization
def postprocess(self,
preds: List[DataSample],
visualization: List[np.ndarray],
return_datasamples=False) -> dict:
if return_datasamples:
return preds
results = []
for data_sample in preds:
pred_scores = data_sample.pred_score
pred_score = float(torch.max(pred_scores).item())
pred_label = torch.argmax(pred_scores).item()
result = {
'pred_scores': pred_scores.detach().cpu().numpy(),
'pred_label': pred_label,
'pred_score': pred_score,
}
if self.classes is not None:
result['pred_class'] = self.classes[pred_label]
results.append(result)
return results
@staticmethod
def list_models(pattern: Optional[str] = None):
"""List all available model names.
Args:
pattern (str | None): A wildcard pattern to match model names.
Returns:
List[str]: a list of model names.
"""
return list_models(pattern=pattern, task='Image Classification')