2021-08-17 19:52:42 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
2023-02-08 14:30:12 +08:00
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable, List, Optional, Union
|
2020-05-21 21:21:43 +08:00
|
|
|
|
2022-12-06 17:00:22 +08:00
|
|
|
import numpy as np
|
2020-09-30 19:00:20 +08:00
|
|
|
import torch
|
2023-02-08 14:30:12 +08:00
|
|
|
from mmcv.image import imread
|
|
|
|
from mmengine.config import Config
|
|
|
|
from mmengine.dataset import Compose, default_collate
|
|
|
|
from mmengine.infer import BaseInferencer
|
|
|
|
from mmengine.model import BaseModel
|
|
|
|
from mmengine.runner import load_checkpoint
|
2020-05-21 21:21:43 +08:00
|
|
|
|
2023-02-08 14:30:12 +08:00
|
|
|
from mmcls.registry import TRANSFORMS
|
|
|
|
from mmcls.structures import ClsDataSample
|
|
|
|
from .model import get_model, init_model, list_models
|
2020-09-30 19:00:20 +08:00
|
|
|
|
2023-02-08 14:30:12 +08:00
|
|
|
ModelType = Union[BaseModel, str, Config]
|
|
|
|
InputType = Union[str, np.ndarray]
|
2020-09-30 19:00:20 +08:00
|
|
|
|
2023-02-08 14:30:12 +08:00
|
|
|
|
|
|
|
def inference_model(model: ModelType, img: InputType, device=None):
|
|
|
|
"""Inference an image with the classifier.
|
2020-09-30 19:00:20 +08:00
|
|
|
|
|
|
|
Args:
|
2023-02-08 14:30:12 +08:00
|
|
|
model (BaseModel | str | Config): The loaded classifier or the model
|
|
|
|
name or the config of the model.
|
|
|
|
img (str | ndarray): The image filename or loaded image.
|
|
|
|
device (str, optional): Device to run inference. If None, use CPU or
|
|
|
|
the device of the input model. Defaults to None.
|
2020-09-30 19:00:20 +08:00
|
|
|
|
|
|
|
Returns:
|
2023-02-08 14:30:12 +08:00
|
|
|
result (dict): The classification results that contains:
|
|
|
|
|
|
|
|
- ``pred_scores``: The classification scores of all categories.
|
|
|
|
- ``pred_class``: The predicted category.
|
|
|
|
- ``pred_label``: The predicted index of the category.
|
|
|
|
- ``pred_score``: The score of the predicted category.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
This function is reserved for compatibility and demo on a single image.
|
|
|
|
We suggest to use :class:`ImageClassificationInferencer`, which is more
|
|
|
|
powerful and configurable.
|
2020-09-30 19:00:20 +08:00
|
|
|
"""
|
2023-02-08 14:30:12 +08:00
|
|
|
inferencer = ImageClassificationInferencer(model, device=device)
|
|
|
|
return inferencer(img)[0]
|
|
|
|
|
|
|
|
|
|
|
|
class ImageClassificationInferencer(BaseInferencer):
|
|
|
|
"""The inferencer for image classification.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (BaseModel | str | Config): A model name or a path to the confi
|
|
|
|
file, or a :obj:`BaseModel` object. The model name can be found
|
|
|
|
by ``ImageClassificationInferencer.list_models()`` and you can also
|
|
|
|
query it in :doc:`/modelzoo_statistics`.
|
|
|
|
weights (str, optional): Path to the checkpoint. If None, it will try
|
|
|
|
to find a pre-defined weight from the model you specified
|
|
|
|
(only work if the ``model`` is a model name). Defaults to None.
|
|
|
|
device (str, optional): Device to run inference. If None, use CPU or
|
|
|
|
the device of the input model. Defaults to None.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
1. Use a pre-trained model in MMClassification to inference an image.
|
|
|
|
|
|
|
|
>>> from mmcls import ImageClassificationInferencer
|
|
|
|
>>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k')
|
|
|
|
>>> inferencer('demo/demo.JPEG')
|
|
|
|
[{'pred_score': array([...]),
|
|
|
|
'pred_label': 65,
|
|
|
|
'pred_score': 0.6649367809295654,
|
|
|
|
'pred_class': 'sea snake'}]
|
|
|
|
|
|
|
|
2. Use a config file and checkpoint to inference multiple images on GPU,
|
|
|
|
and save the visualization results in a folder.
|
|
|
|
|
|
|
|
>>> from mmcls import ImageClassificationInferencer
|
|
|
|
>>> inferencer = ImageClassificationInferencer(
|
|
|
|
model='configs/resnet/resnet50_8xb32_in1k.py',
|
|
|
|
weights='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth',
|
|
|
|
device='cuda')
|
|
|
|
>>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/")
|
|
|
|
""" # noqa: E501
|
|
|
|
|
|
|
|
visualize_kwargs: set = {
|
|
|
|
'rescale_factor', 'draw_score', 'show', 'show_dir'
|
|
|
|
}
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model: ModelType,
|
|
|
|
weights: Optional[str] = None,
|
|
|
|
device: Union[str, torch.device, None] = None,
|
|
|
|
classes=None,
|
|
|
|
) -> None:
|
|
|
|
if isinstance(model, BaseModel):
|
|
|
|
if weights is not None:
|
|
|
|
load_checkpoint(model, weights, map_location='cpu')
|
|
|
|
model = model.to(device)
|
|
|
|
elif isinstance(model, str) and not Path(model).is_file():
|
|
|
|
# Get model from model name
|
|
|
|
pretrained = weights if weights is not None else True
|
|
|
|
model = get_model(model, pretrained=pretrained, device=device)
|
|
|
|
elif isinstance(model, (Config, str)):
|
|
|
|
# Get model from config
|
|
|
|
model = init_model(model, checkpoint=weights, device=device)
|
|
|
|
else:
|
|
|
|
raise TypeError(
|
|
|
|
'The `model` can be a name of model and you can use '
|
|
|
|
'`mmcls.list_models` to get an available name. It can '
|
|
|
|
'also be a Config object or a path to the config file.')
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
self.cfg = model.cfg
|
|
|
|
self.model = model
|
|
|
|
self.pipeline = self._init_pipeline(self.cfg)
|
|
|
|
self.collate_fn = default_collate
|
|
|
|
self.visualizer = None
|
|
|
|
|
|
|
|
self.classes = classes or getattr(self.model, 'CLASSES', None)
|
|
|
|
|
|
|
|
def __call__(self,
|
|
|
|
inputs: List[InputType],
|
|
|
|
return_datasamples: bool = False,
|
|
|
|
batch_size: int = 1,
|
|
|
|
**kwargs) -> dict:
|
|
|
|
"""Call the inferencer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
inputs (InputsType): Inputs for the inferencer.
|
|
|
|
return_datasamples (bool): Whether to return results as
|
|
|
|
:obj:`BaseDataElement`. Defaults to False.
|
|
|
|
batch_size (int): Batch size. Defaults to 1.
|
|
|
|
rescale_factor (float, optional): Rescale the image by the rescale
|
|
|
|
factor for visualization. This is helpful when the image is too
|
|
|
|
large or too small for visualization. Defaults to None.
|
|
|
|
draw_score (bool): Whether to draw the prediction scores
|
|
|
|
of prediction categories. Defaults to True.
|
|
|
|
show (bool): Whether to display the visualization result in a
|
|
|
|
window. Defaults to False.
|
|
|
|
show_dir (str, optional): If not None, save the visualization
|
|
|
|
results in the specified directory. Defaults to None.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: The inference results.
|
|
|
|
"""
|
|
|
|
return super().__call__(inputs, return_datasamples, batch_size,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
def _init_pipeline(self, cfg: Config) -> Callable:
|
|
|
|
test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline
|
2022-07-22 10:59:08 +08:00
|
|
|
if test_pipeline_cfg[0]['type'] == 'LoadImageFromFile':
|
2023-02-08 14:30:12 +08:00
|
|
|
# Image loading is finished in `self.preprocess`.
|
|
|
|
test_pipeline_cfg = test_pipeline_cfg[1:]
|
|
|
|
test_pipeline = Compose(
|
|
|
|
[TRANSFORMS.build(t) for t in test_pipeline_cfg])
|
|
|
|
return test_pipeline
|
|
|
|
|
|
|
|
def preprocess(self, inputs: List[InputType], batch_size: int = 1):
|
|
|
|
|
|
|
|
def load_image(input_):
|
|
|
|
img = imread(input_)
|
|
|
|
if img is None:
|
|
|
|
raise ValueError(f'Failed to read image {input_}.')
|
|
|
|
return dict(
|
|
|
|
img=img,
|
|
|
|
img_shape=img.shape[:2],
|
|
|
|
ori_shape=img.shape[:2],
|
|
|
|
)
|
|
|
|
|
|
|
|
pipeline = Compose([load_image, self.pipeline])
|
|
|
|
|
|
|
|
chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size)
|
|
|
|
yield from map(self.collate_fn, chunked_data)
|
|
|
|
|
|
|
|
def visualize(self,
|
|
|
|
ori_inputs: List[InputType],
|
|
|
|
preds: List[ClsDataSample],
|
|
|
|
show: bool = False,
|
|
|
|
rescale_factor: Optional[float] = None,
|
|
|
|
draw_score=True,
|
|
|
|
show_dir=None):
|
|
|
|
if not show and show_dir is None:
|
|
|
|
return None
|
|
|
|
|
|
|
|
if self.visualizer is None:
|
|
|
|
from mmcls.visualization import ClsVisualizer
|
|
|
|
self.visualizer = ClsVisualizer()
|
|
|
|
if self.classes is not None:
|
|
|
|
self.visualizer._dataset_meta = dict(classes=self.classes)
|
|
|
|
|
|
|
|
visualization = []
|
|
|
|
for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)):
|
|
|
|
image = imread(input_)
|
|
|
|
if isinstance(input_, str):
|
|
|
|
# The image loaded from path is BGR format.
|
|
|
|
image = image[..., ::-1]
|
|
|
|
name = Path(input_).stem
|
|
|
|
else:
|
|
|
|
name = str(i)
|
|
|
|
|
|
|
|
if show_dir is not None:
|
|
|
|
show_dir = Path(show_dir)
|
|
|
|
show_dir.mkdir(exist_ok=True)
|
|
|
|
out_file = str((show_dir / name).with_suffix('.png'))
|
|
|
|
else:
|
|
|
|
out_file = None
|
|
|
|
|
|
|
|
self.visualizer.add_datasample(
|
|
|
|
name,
|
|
|
|
image,
|
|
|
|
data_sample,
|
|
|
|
show=show,
|
|
|
|
rescale_factor=rescale_factor,
|
|
|
|
draw_gt=False,
|
|
|
|
draw_pred=True,
|
|
|
|
draw_score=draw_score,
|
|
|
|
out_file=out_file)
|
|
|
|
visualization.append(self.visualizer.get_image())
|
|
|
|
if show:
|
|
|
|
self.visualizer.close()
|
|
|
|
return visualization
|
|
|
|
|
|
|
|
def postprocess(self,
|
|
|
|
preds: List[ClsDataSample],
|
|
|
|
visualization: List[np.ndarray],
|
|
|
|
return_datasamples=False) -> dict:
|
|
|
|
if return_datasamples:
|
|
|
|
return preds
|
|
|
|
|
|
|
|
results = []
|
|
|
|
for data_sample in preds:
|
|
|
|
prediction = data_sample.pred_label
|
|
|
|
pred_scores = prediction.score.detach().cpu().numpy()
|
|
|
|
pred_score = torch.max(prediction.score).item()
|
|
|
|
pred_label = torch.argmax(prediction.score).item()
|
|
|
|
result = {
|
|
|
|
'pred_scores': pred_scores,
|
|
|
|
'pred_label': pred_label,
|
|
|
|
'pred_score': float(pred_score),
|
|
|
|
}
|
|
|
|
if self.classes is not None:
|
|
|
|
result['pred_class'] = self.classes[pred_label]
|
|
|
|
results.append(result)
|
|
|
|
|
|
|
|
return results
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def list_models(pattern: Optional[str] = None):
|
|
|
|
"""List all available model names.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pattern (str | None): A wildcard pattern to match model names.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[str]: a list of model names.
|
|
|
|
"""
|
|
|
|
return list_models(pattern=pattern)
|