mmclassification/mmcls/datasets/custom.py

230 lines
8.1 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
from mmcv import FileClient
from mmcls.registry import DATASETS
from .base_dataset import BaseDataset
def find_folders(root: str,
file_client: FileClient) -> Tuple[List[str], Dict[str, int]]:
"""Find classes by folders under a root.
Args:
root (string): root directory of folders
Returns:
Tuple[List[str], Dict[str, int]]:
- folders: The name of sub folders under the root.
- folder_to_idx: The map from folder name to class idx.
"""
folders = list(
file_client.list_dir_or_file(
root,
list_dir=True,
list_file=False,
recursive=False,
))
folders.sort()
folder_to_idx = {folders[i]: i for i in range(len(folders))}
return folders, folder_to_idx
def get_samples(root: str, folder_to_idx: Dict[str, int],
is_valid_file: Callable, file_client: FileClient):
"""Make dataset by walking all images under a root.
Args:
root (string): root directory of folders
folder_to_idx (dict): the map from class name to class idx
is_valid_file (Callable): A function that takes path of a file
and check if the file is a valid sample file.
Returns:
Tuple[list, set]:
- samples: a list of tuple where each element is (image, class_idx)
- empty_folders: The folders don't have any valid files.
"""
samples = []
available_classes = set()
for folder_name in sorted(list(folder_to_idx.keys())):
_dir = file_client.join_path(root, folder_name)
files = list(
file_client.list_dir_or_file(
_dir,
list_dir=False,
list_file=True,
recursive=True,
))
for file in sorted(list(files)):
if is_valid_file(file):
path = file_client.join_path(folder_name, file)
item = (path, folder_to_idx[folder_name])
samples.append(item)
available_classes.add(folder_name)
empty_folders = set(folder_to_idx.keys()) - available_classes
return samples, empty_folders
@DATASETS.register_module()
class CustomDataset(BaseDataset):
"""Custom dataset for classification.
The dataset supports two kinds of annotation format.
1. An annotation file is provided, and each line indicates a sample:
The sample files: ::
data_prefix/
folder_1
xxx.png
xxy.png
...
folder_2
123.png
nsdf3.png
...
The annotation file (the first column is the image path and the second
column is the index of category): ::
folder_1/xxx.png 0
folder_1/xxy.png 1
folder_2/123.png 5
folder_2/nsdf3.png 3
...
Please specify the name of categories by the argument ``classes``.
2. The samples are arranged in the specific way: ::
data_prefix/
class_x
xxx.png
xxy.png
...
xxz.png
class_y
123.png
nsdf3.png
...
asd932_.png
If the ``ann_file`` is specified, the dataset will be generated by the
first way, otherwise, try the second way.
Args:
data_prefix (str): The path of data directory.
pipeline (Sequence[dict]): A list of dict, where each element
represents a operation defined in :mod:`mmcls.datasets.pipelines`.
Defaults to an empty tuple.
classes (str | Sequence[str], optional): Specify names of classes.
- If is string, it should be a file path, and the every line of
the file is a name of a class.
- If is a sequence of string, every item is a name of class.
- If is None, use ``cls.CLASSES`` or the names of sub folders
(If use the second way to arrange samples).
Defaults to None.
ann_file (str, optional): The annotation file. If is string, read
samples paths from the ann_file. If is None, find samples in
``data_prefix``. Defaults to None.
extensions (Sequence[str]): A sequence of allowed extensions. Defaults
to ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif').
test_mode (bool): In train mode or test mode. It's only a mark and
won't be used in this class. Defaults to False.
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmcv.fileio.FileClient` for details.
If None, automatically inference from the specified path.
Defaults to None.
"""
def __init__(self,
data_prefix: str,
pipeline: Sequence = (),
classes: Union[str, Sequence[str], None] = None,
ann_file: Optional[str] = None,
extensions: Sequence[str] = ('.jpg', '.jpeg', '.png', '.ppm',
'.bmp', '.pgm', '.tif'),
test_mode: bool = False,
file_client_args: Optional[dict] = None):
self.extensions = tuple(set([i.lower() for i in extensions]))
self.file_client_args = file_client_args
super().__init__(
data_prefix=data_prefix,
pipeline=pipeline,
classes=classes,
ann_file=ann_file,
test_mode=test_mode)
def _find_samples(self):
"""find samples from ``data_prefix``."""
file_client = FileClient.infer_client(self.file_client_args,
self.data_prefix)
classes, folder_to_idx = find_folders(self.data_prefix, file_client)
samples, empty_classes = get_samples(
self.data_prefix,
folder_to_idx,
is_valid_file=self.is_valid_file,
file_client=file_client,
)
if len(samples) == 0:
raise RuntimeError(
f'Found 0 files in subfolders of: {self.data_prefix}. '
f'Supported extensions are: {",".join(self.extensions)}')
if self.CLASSES is not None:
assert len(self.CLASSES) == len(classes), \
f"The number of subfolders ({len(classes)}) doesn't match " \
f'the number of specified classes ({len(self.CLASSES)}). ' \
'Please check the data folder.'
else:
self.CLASSES = classes
if empty_classes:
warnings.warn(
'Found no valid file in the folder '
f'{", ".join(empty_classes)}. '
f"Supported extensions are: {', '.join(self.extensions)}",
UserWarning)
self.folder_to_idx = folder_to_idx
return samples
def load_annotations(self):
"""Load image paths and gt_labels."""
if self.ann_file is None:
samples = self._find_samples()
elif isinstance(self.ann_file, str):
lines = mmcv.list_from_file(
self.ann_file, file_client_args=self.file_client_args)
samples = [x.strip().rsplit(' ', 1) for x in lines]
else:
raise TypeError('ann_file must be a str or None')
data_infos = []
for filename, gt_label in samples:
info = {'img_prefix': self.data_prefix}
info['img_info'] = {'filename': filename}
info['gt_label'] = np.array(gt_label, dtype=np.int64)
data_infos.append(info)
return data_infos
def is_valid_file(self, filename: str) -> bool:
"""Check if a file is a valid sample."""
return filename.lower().endswith(self.extensions)