189 lines
6.6 KiB
Python
189 lines
6.6 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
from mmengine.model import BaseModule
|
||
|
|
||
|
from mmpretrain.registry import MODELS
|
||
|
|
||
|
|
||
|
@MODELS.register_module()
|
||
|
class SeqGenerationHead(BaseModule):
|
||
|
"""Generation head for multi-modal pre-trained task, adopted by BLIP.
|
||
|
Normally used for generation task.
|
||
|
|
||
|
Args:
|
||
|
decoder (dict): Decoder for blip generation head.
|
||
|
init_cfg (dict, optional): the config to control the initialization.
|
||
|
Defaults to None.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
decoder: dict,
|
||
|
ignore_index=-100,
|
||
|
loss: dict = dict(type='LabelSmoothLoss', label_smooth_val=0.1),
|
||
|
init_cfg: Optional[dict] = None,
|
||
|
) -> None:
|
||
|
super(SeqGenerationHead, self).__init__(init_cfg=init_cfg)
|
||
|
self.decoder = MODELS.build(decoder)
|
||
|
self.loss_fn = MODELS.build(loss)
|
||
|
self.ignore_index = ignore_index
|
||
|
|
||
|
def forward(self, input_ids: torch.Tensor,
|
||
|
encoder_hidden_states: torch.Tensor,
|
||
|
encoder_attention_mask: torch.Tensor, labels: torch.Tensor):
|
||
|
"""Forward to get decoder output.
|
||
|
|
||
|
Args:
|
||
|
input_ids (torch.Tensor): The tokenized input text tensor.
|
||
|
encoder_hidden_states (torch.Tensor): Hidden states from image
|
||
|
embeddings.
|
||
|
encoder_attention_mask (torch.Tensor): Image embeddings hidden
|
||
|
states attention mask.
|
||
|
labels (torch.Tensor): Decoder target for calculate loss.
|
||
|
|
||
|
Returns:
|
||
|
dict[str, Tensor]: a dictionary of decoder outputs.
|
||
|
"""
|
||
|
|
||
|
decoder_out = self.decoder(
|
||
|
input_ids=input_ids,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
labels=labels,
|
||
|
return_dict=True,
|
||
|
)
|
||
|
return decoder_out
|
||
|
|
||
|
def loss(self, input_ids, encoder_hidden_states, encoder_attention_mask,
|
||
|
labels):
|
||
|
"""Calculate losses from the extracted features.
|
||
|
|
||
|
Args:
|
||
|
input_ids (torch.Tensor): The tokenized input text tensor.
|
||
|
encoder_hidden_states (torch.Tensor): Hidden states from image
|
||
|
embeddings.
|
||
|
encoder_attention_mask (torch.Tensor): Image embeddings hidden
|
||
|
states attention mask.
|
||
|
labels (torch.Tensor): Decoder target for calculate loss.
|
||
|
|
||
|
Returns:
|
||
|
dict[str, Tensor]: a dictionary of loss components.
|
||
|
"""
|
||
|
|
||
|
decoder_out = self(
|
||
|
input_ids=input_ids,
|
||
|
encoder_hidden_states=encoder_hidden_states,
|
||
|
encoder_attention_mask=encoder_attention_mask,
|
||
|
labels=labels,
|
||
|
)
|
||
|
prediction_scores = decoder_out['logits']
|
||
|
# we are doing next-token prediction;
|
||
|
# shift prediction scores and input ids by one
|
||
|
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
||
|
labels = labels[:, 1:].contiguous()
|
||
|
|
||
|
vocab_size = prediction_scores.shape[-1]
|
||
|
|
||
|
# mask ignored index
|
||
|
if (labels == self.ignore_index).any():
|
||
|
labels = labels.view(-1).clone()
|
||
|
ignore_mask = (labels == self.ignore_index)
|
||
|
labels.masked_fill_(ignore_mask, 0)
|
||
|
weight = torch.logical_not(ignore_mask)
|
||
|
avg_factor = max(weight.sum(), 1)
|
||
|
else:
|
||
|
weight = None
|
||
|
avg_factor = labels.size(0)
|
||
|
|
||
|
lm_loss = self.loss_fn(
|
||
|
shifted_prediction_scores.view(-1, vocab_size),
|
||
|
labels,
|
||
|
weight=weight,
|
||
|
avg_factor=avg_factor,
|
||
|
)
|
||
|
losses = {
|
||
|
'seq_gen_lm_loss': lm_loss,
|
||
|
}
|
||
|
|
||
|
return losses
|
||
|
|
||
|
def predict(self,
|
||
|
input_ids,
|
||
|
encoder_hidden_states,
|
||
|
sep_token_id,
|
||
|
pad_token_id,
|
||
|
use_nucleus_sampling=False,
|
||
|
num_beams=3,
|
||
|
max_length=20,
|
||
|
min_length=2,
|
||
|
top_p=0.9,
|
||
|
repetition_penalty=1.0,
|
||
|
**kwargs):
|
||
|
"""Decoder prediction method.
|
||
|
|
||
|
Args:
|
||
|
input_ids (torch.Tensor): The tokenized input text tensor.
|
||
|
encoder_hidden_states (torch.Tensor): Hidden states from image
|
||
|
embeddings.
|
||
|
sep_token_id (int): Tokenid of separation token.
|
||
|
pad_token_id (int): Tokenid of pad token.
|
||
|
use_nucleus_sampling (bool): Whether to use nucleus sampling in
|
||
|
prediction. Defaults to False.
|
||
|
num_beams (int): Number of beams used in predition.
|
||
|
Defaults to 3.
|
||
|
max_length (int): Max length of generated text in predition.
|
||
|
Defaults to 20.
|
||
|
min_length (int): Min length of generated text in predition.
|
||
|
Defaults to 20.
|
||
|
top_p (float):
|
||
|
If < 1.0, only keep the top tokens with cumulative probability
|
||
|
>= top_p (nucleus filtering). Defaults to 0.9.
|
||
|
repetition_penalty (float): The parameter for repetition penalty.
|
||
|
Defaults to 1.0.
|
||
|
**kwarg: Other arguments that might used in generation.
|
||
|
|
||
|
Returns:
|
||
|
dict[str, Tensor]: a dictionary of generation outputs.
|
||
|
"""
|
||
|
device = encoder_hidden_states.device
|
||
|
|
||
|
# TODO: In old version of transformers
|
||
|
# Additional repeat interleave of hidden states should be add here.
|
||
|
image_atts = torch.ones(
|
||
|
encoder_hidden_states.size()[:-1], dtype=torch.long).to(device)
|
||
|
|
||
|
model_kwargs = {
|
||
|
'encoder_hidden_states': encoder_hidden_states,
|
||
|
'encoder_attention_mask': image_atts,
|
||
|
}
|
||
|
model_kwargs.update(kwargs)
|
||
|
|
||
|
if use_nucleus_sampling:
|
||
|
# nucleus sampling
|
||
|
outputs = self.decoder.generate(
|
||
|
input_ids=input_ids,
|
||
|
max_length=max_length,
|
||
|
min_length=min_length,
|
||
|
do_sample=True,
|
||
|
top_p=top_p,
|
||
|
num_return_sequences=1,
|
||
|
eos_token_id=sep_token_id,
|
||
|
pad_token_id=pad_token_id,
|
||
|
repetition_penalty=1.1,
|
||
|
**model_kwargs)
|
||
|
else:
|
||
|
# beam search
|
||
|
outputs = self.decoder.generate(
|
||
|
input_ids=input_ids,
|
||
|
max_length=max_length,
|
||
|
min_length=min_length,
|
||
|
num_beams=num_beams,
|
||
|
eos_token_id=sep_token_id,
|
||
|
pad_token_id=pad_token_id,
|
||
|
repetition_penalty=repetition_penalty,
|
||
|
**model_kwargs)
|
||
|
|
||
|
return outputs
|