mmclassification/mmpretrain/models/heads/seq_gen_head.py

189 lines
6.6 KiB
Python
Raw Normal View History

[Feature] Support multiple multi-modal algorithms and inferencers. (#1561) * [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional
import torch
from mmengine.model import BaseModule
from mmpretrain.registry import MODELS
@MODELS.register_module()
class SeqGenerationHead(BaseModule):
"""Generation head for multi-modal pre-trained task, adopted by BLIP.
Normally used for generation task.
Args:
decoder (dict): Decoder for blip generation head.
init_cfg (dict, optional): the config to control the initialization.
Defaults to None.
"""
def __init__(
self,
decoder: dict,
ignore_index=-100,
loss: dict = dict(type='LabelSmoothLoss', label_smooth_val=0.1),
init_cfg: Optional[dict] = None,
) -> None:
super(SeqGenerationHead, self).__init__(init_cfg=init_cfg)
self.decoder = MODELS.build(decoder)
self.loss_fn = MODELS.build(loss)
self.ignore_index = ignore_index
def forward(self, input_ids: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor, labels: torch.Tensor):
"""Forward to get decoder output.
Args:
input_ids (torch.Tensor): The tokenized input text tensor.
encoder_hidden_states (torch.Tensor): Hidden states from image
embeddings.
encoder_attention_mask (torch.Tensor): Image embeddings hidden
states attention mask.
labels (torch.Tensor): Decoder target for calculate loss.
Returns:
dict[str, Tensor]: a dictionary of decoder outputs.
"""
decoder_out = self.decoder(
input_ids=input_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
labels=labels,
return_dict=True,
)
return decoder_out
def loss(self, input_ids, encoder_hidden_states, encoder_attention_mask,
labels):
"""Calculate losses from the extracted features.
Args:
input_ids (torch.Tensor): The tokenized input text tensor.
encoder_hidden_states (torch.Tensor): Hidden states from image
embeddings.
encoder_attention_mask (torch.Tensor): Image embeddings hidden
states attention mask.
labels (torch.Tensor): Decoder target for calculate loss.
Returns:
dict[str, Tensor]: a dictionary of loss components.
"""
decoder_out = self(
input_ids=input_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
labels=labels,
)
prediction_scores = decoder_out['logits']
# we are doing next-token prediction;
# shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
vocab_size = prediction_scores.shape[-1]
# mask ignored index
if (labels == self.ignore_index).any():
labels = labels.view(-1).clone()
ignore_mask = (labels == self.ignore_index)
labels.masked_fill_(ignore_mask, 0)
weight = torch.logical_not(ignore_mask)
avg_factor = max(weight.sum(), 1)
else:
weight = None
avg_factor = labels.size(0)
lm_loss = self.loss_fn(
shifted_prediction_scores.view(-1, vocab_size),
labels,
weight=weight,
avg_factor=avg_factor,
)
losses = {
'seq_gen_lm_loss': lm_loss,
}
return losses
def predict(self,
input_ids,
encoder_hidden_states,
sep_token_id,
pad_token_id,
use_nucleus_sampling=False,
num_beams=3,
max_length=20,
min_length=2,
top_p=0.9,
repetition_penalty=1.0,
**kwargs):
"""Decoder prediction method.
Args:
input_ids (torch.Tensor): The tokenized input text tensor.
encoder_hidden_states (torch.Tensor): Hidden states from image
embeddings.
sep_token_id (int): Tokenid of separation token.
pad_token_id (int): Tokenid of pad token.
use_nucleus_sampling (bool): Whether to use nucleus sampling in
prediction. Defaults to False.
num_beams (int): Number of beams used in predition.
Defaults to 3.
max_length (int): Max length of generated text in predition.
Defaults to 20.
min_length (int): Min length of generated text in predition.
Defaults to 20.
top_p (float):
If < 1.0, only keep the top tokens with cumulative probability
>= top_p (nucleus filtering). Defaults to 0.9.
repetition_penalty (float): The parameter for repetition penalty.
Defaults to 1.0.
**kwarg: Other arguments that might used in generation.
Returns:
dict[str, Tensor]: a dictionary of generation outputs.
"""
device = encoder_hidden_states.device
# TODO: In old version of transformers
# Additional repeat interleave of hidden states should be add here.
image_atts = torch.ones(
encoder_hidden_states.size()[:-1], dtype=torch.long).to(device)
model_kwargs = {
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': image_atts,
}
model_kwargs.update(kwargs)
if use_nucleus_sampling:
# nucleus sampling
outputs = self.decoder.generate(
input_ids=input_ids,
max_length=max_length,
min_length=min_length,
do_sample=True,
top_p=top_p,
num_return_sequences=1,
eos_token_id=sep_token_id,
pad_token_id=pad_token_id,
repetition_penalty=1.1,
**model_kwargs)
else:
# beam search
outputs = self.decoder.generate(
input_ids=input_ids,
max_length=max_length,
min_length=min_length,
num_beams=num_beams,
eos_token_id=sep_token_id,
pad_token_id=pad_token_id,
repetition_penalty=repetition_penalty,
**model_kwargs)
return outputs