mmclassification/mmpretrain/datasets/visual_genome.py

96 lines
2.9 KiB
Python
Raw Normal View History

[Feature] Support multiple multi-modal algorithms and inferencers. (#1561) * [Feat] Migrate blip caption to mmpretrain. (#50) * Migrate blip caption to mmpretrain * minor fix * support train * [Feature] Support OFA caption task. (#51) * [Feature] Support OFA caption task. * Remove duplicated files. * [Feature] Support OFA vqa task. (#58) * [Feature] Support OFA vqa task. * Fix lint. * [Feat] Add BLIP retrieval to mmpretrain. (#55) * init * minor fix for train * fix according to comments * refactor * Update Blip retrieval. (#62) * [Feature] Support OFA visual grounding task. (#59) * [Feature] Support OFA visual grounding task. * minor add TODO --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Add flamingos coco caption and vqa. (#60) * first init * init flamingo coco * add vqa * minor fix * remove unnecessary modules * Update config * Use `ApplyToList`. --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 coco retrieval (#53) * [Feature]: Add blip2 retriever * [Feature]: Add blip2 all modules * [Feature]: Refine model * [Feature]: x1 * [Feature]: Runnable coco ret * [Feature]: Runnable version * [Feature]: Fix lint * [Fix]: Fix lint * [Feature]: Use 364 img size * [Feature]: Refactor blip2 * [Fix]: Fix lint * refactor files * minor fix * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Remove * fix blip caption inputs (#68) * [Feat] Add BLIP NLVR support. (#67) * first init * init flamingo coco * add vqa * add nlvr * refactor nlvr * minor fix * minor fix * Update dataset --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature]: BLIP2 Caption (#70) * [Feature]: Add language model * [Feature]: blip2 caption forward * [Feature]: Reproduce the results * [Feature]: Refactor caption * refine config --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feat] Migrate BLIP VQA to mmpretrain (#69) * reformat * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * change * refactor code --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * Update RefCOCO dataset * [Fix] fix lint * [Feature] Implement inference APIs for multi-modal tasks. (#65) * [Feature] Implement inference APIs for multi-modal tasks. * [Project] Add gradio demo. * [Improve] Update requirements * Update flamingo * Update blip * Add NLVR inferencer * Update flamingo * Update hugging face model register * Update ofa vqa * Update BLIP-vqa (#71) * Update blip-vqa docstring (#72) * Refine flamingo docstring (#73) * [Feature]: BLIP2 VQA (#61) * [Feature]: VQA forward * [Feature]: Reproduce accuracy * [Fix]: Fix lint * [Fix]: Add blank line * minor fix --------- Co-authored-by: yingfhu <yingfhu@gmail.com> * [Feature]: BLIP2 docstring (#74) * [Feature]: Add caption docstring * [Feature]: Add docstring to blip2 vqa * [Feature]: Add docstring to retrieval * Update BLIP-2 metafile and README (#75) * [Feature]: Add readme and docstring * Update blip2 results --------- Co-authored-by: mzr1996 <mzr1996@163.com> * [Feature] BLIP Visual Grounding on MMPretrain Branch (#66) * blip grounding merge with mmpretrain * remove commit * blip grounding test and inference api * refcoco dataset * refcoco dataset refine config * rebasing * gitignore * rebasing * minor edit * minor edit * Update blip-vqa docstring (#72) * rebasing * Revert "minor edit" This reverts commit 639cec757c215e654625ed0979319e60f0be9044. * blip grounding final * precommit * refine config * refine config * Update blip visual grounding --------- Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: mzr1996 <mzr1996@163.com> * Update visual grounding metric * Update OFA docstring, README and metafiles. (#76) * [Docs] Update installation docs and gradio demo docs. (#77) * Update OFA name * Update Visual Grounding Visualizer * Integrate accelerate support * Fix imports. * Fix timm backbone * Update imports * Update README * Update circle ci * Update flamingo config * Add gradio demo README * [Feature]: Add scienceqa (#1571) * [Feature]: Add scienceqa * [Feature]: Change param name * Update docs * Update video --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> Co-authored-by: yingfhu <yingfhu@gmail.com> Co-authored-by: Yuan Liu <30762564+YuanLiuuuuuu@users.noreply.github.com> Co-authored-by: Yiqin Wang 王逸钦 <wyq1217@outlook.com> Co-authored-by: Rongjie Li <limo97@163.com>
2023-05-19 16:50:04 +08:00
# Copyright (c) OpenMMLab. All rights reserved.
import re
from itertools import chain
from typing import List
import mmengine
from mmengine.dataset import BaseDataset
from mmpretrain.registry import DATASETS
@DATASETS.register_module()
class VisualGenomeQA(BaseDataset):
"""Visual Genome Question Answering dataset.
dataset structure: ::
data_root
image
   1.jpg
   2.jpg
   ...
question_answers.json
Args:
data_root (str): The root directory for ``data_prefix``, ``ann_file``
and ``question_file``.
data_prefix (str): The directory of images. Defaults to ``"image"``.
ann_file (str, optional): Annotation file path for training and
validation. Defaults to ``"question_answers.json"``.
**kwargs: Other keyword arguments in :class:`BaseDataset`.
"""
def __init__(self,
data_root: str,
data_prefix: str = 'image',
ann_file: str = 'question_answers.json',
**kwarg):
super().__init__(
data_root=data_root,
data_prefix=dict(img_path=data_prefix),
ann_file=ann_file,
**kwarg,
)
def _create_image_index(self):
img_prefix = self.data_prefix['img_path']
files = mmengine.list_dir_or_file(img_prefix, list_dir=False)
image_index = {}
for file in files:
image_id = re.findall(r'\d+', file)
if len(image_id) > 0:
image_id = int(image_id[-1])
image_index[image_id] = mmengine.join_path(img_prefix, file)
return image_index
def load_data_list(self) -> List[dict]:
"""Load data list."""
annotations = mmengine.load(self.ann_file)
# The original Visual Genome annotation file and question file includes
# only image id but no image file paths.
self.image_index = self._create_image_index()
data_list = []
for qas in chain.from_iterable(ann['qas'] for ann in annotations):
# ann example
# {
# 'id': 1,
# 'qas': [
# {
# 'a_objects': [],
# 'question': 'What color is the clock?',
# 'image_id': 1,
# 'qa_id': 986768,
# 'answer': 'Two.',
# 'q_objects': [],
# }
# ...
# ]
# }
data_info = {
'img_path': self.image_index[qas['image_id']],
'quesiton': qas['quesiton'],
'question_id': qas['question_id'],
'image_id': qas['image_id'],
'gt_answer': [qas['answer']],
}
data_list.append(data_info)
return data_list