mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
43 lines
1.3 KiB
Python
43 lines
1.3 KiB
Python
|
from collections.abc import Sequence
|
||
|
|
||
|
from mmcv.utils import build_from_cfg
|
||
|
|
||
|
from ..registry import PIPELINES
|
||
|
|
||
|
|
||
|
@PIPELINES.register_module
|
||
|
class Compose(object):
|
||
|
"""Compose a data pipeline with a sequence of transforms.
|
||
|
|
||
|
Args:
|
||
|
transforms (list[dict | callable]):
|
||
|
Either config dicts of transforms or transform objects.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, transforms):
|
||
|
assert isinstance(transforms, Sequence)
|
||
|
self.transforms = []
|
||
|
for transform in transforms:
|
||
|
if isinstance(transform, dict):
|
||
|
transform = build_from_cfg(transform, PIPELINES)
|
||
|
self.transforms.append(transform)
|
||
|
elif callable(transform):
|
||
|
self.transforms.append(transform)
|
||
|
else:
|
||
|
raise TypeError('transform must be callable or a dict, but got'
|
||
|
f' {type(transform)}')
|
||
|
|
||
|
def __call__(self, data):
|
||
|
for t in self.transforms:
|
||
|
data = t(data)
|
||
|
if data is None:
|
||
|
return None
|
||
|
return data
|
||
|
|
||
|
def __repr__(self):
|
||
|
format_string = self.__class__.__name__ + '('
|
||
|
for t in self.transforms:
|
||
|
format_string += f'\n {t}'
|
||
|
format_string += '\n)'
|
||
|
return format_string
|