-`--output-dir`: The output path for visualized images. If not specified, it will be set to `''`, which means not to save.
-`--phase`: Phase of visualizing dataset,must be one of `[train, val, test]`. If not specified, it will be set to `train`.
-`--number`: The number of samples to visualize. If not specified, display all images in the dataset.
-`--skip-type`: The pipelines to be skipped. If not specified, it will be set to `['ToTensor', 'Normalize', 'ImageToTensor', 'Collect']`.
-`--mode`: The display mode, can be one of `[original, pipeline, concat]`. If not specified, it will be set to `concat`.
-`--show`: If set, display pictures in pop-up windows.
-`--adaptive`: If set, automatically adjust the size of the visualization images.
-`--min-edge-length`: The minimum edge length, used when `--adaptive` is set. When any side of the picture is smaller than `${MIN_EDGE_LENGTH}`, the picture will be enlarged while keeping the aspect ratio unchanged, and the short side will be aligned to `${MIN_EDGE_LENGTH}`. If not specified, it will be set to 200.
-`--max-edge-length`: The maximum edge length, used when `--adaptive` is set. When any side of the picture is larger than `${MAX_EDGE_LENGTH}`, the picture will be reduced while keeping the aspect ratio unchanged, and the long side will be aligned to `${MAX_EDGE_LENGTH}`. If not specified, it will be set to 1000.
-`--bgr2rgb`: If set, flip the color channel order of images.
-`--window-size`: The shape of the display window. If not specified, it will be set to `12*7`. If used, it must be in the format `'W*H'`.
```{note}
1. If the `--mode` is not specified, it will be set to `concat` as default, get the pictures stitched together by original pictures and transformed pictures; if the `--mode` is set to `original`, get the original pictures; if the `--mode` is set to `pipeline`, get the transformed pictures.
2. When `--adaptive` option is set, images that are too large or too small will be automatically adjusted, you can use `--min-edge-length` and `--max-edge-length` to set the adjust size.
```
**Examples**:
1. Visualize all the transformed pictures of the `ImageNet` training set and display them in pop-up windows:
-`dataset-size` : The size of the datasets. If set,`build_dataset` will be skipped and `${DATASET_SIZE}` will be used as the size. Default to use the function `build_dataset`.
-`ngpus` : The number of GPUs used in training, default to be 1.
-`save-path` : The learning rate curve plot save path, default not to save.
-`title` : Title of figure. If not set, default to be config file name.
-`style` : Style of plt. If not set, default to be `whitegrid`.
-`window-size`: The shape of the display window. If not specified, it will be set to `12*7`. If used, it must be in the format `'W*H'`.
-`cfg-options` : Modifications to the configuration file, refer to [Tutorial 1: Learn about Configs](https://mmclassification.readthedocs.io/en/latest/tutorials/config.html).
```{note}
Loading annotations maybe consume much time, you can directly specify the size of the dataset with `dataset-size` to save time.