mirror of
https://github.com/open-mmlab/mmclassification.git
synced 2025-06-03 21:53:55 +08:00
84 lines
2.6 KiB
Markdown
84 lines
2.6 KiB
Markdown
|
# 混淆矩阵
|
|||
|
|
|||
|
MMPretrain 提供 `tools/analysis_tools/confusion_matrix.py` 工具来分析预测结果的混淆矩阵。关于混淆矩阵的介绍,可参考[链接](https://zh.wikipedia.org/zh-cn/%E6%B7%B7%E6%B7%86%E7%9F%A9%E9%98%B5)。
|
|||
|
|
|||
|
## 命令行使用
|
|||
|
|
|||
|
**命令行**:
|
|||
|
|
|||
|
```shell
|
|||
|
python tools/analysis_tools/confusion_matrix.py \
|
|||
|
${CONFIG_FILE} \
|
|||
|
${CHECKPOINT} \
|
|||
|
[--show] \
|
|||
|
[--show-path] \
|
|||
|
[--include-values] \
|
|||
|
[--cmap ${CMAP}] \
|
|||
|
[--cfg-options ${CFG-OPTIONS}]
|
|||
|
```
|
|||
|
|
|||
|
**所有参数的说明**:
|
|||
|
|
|||
|
- `config`:模型配置文件的路径。
|
|||
|
- `checkpoint`:权重路径。
|
|||
|
- `--show`:是否展示混淆矩阵的 matplotlib 可视化结果,默认不展示。
|
|||
|
- `--show-path`:如果 `show` 为 True,可视化结果的保存路径。
|
|||
|
- `--include-values`:是否在可视化结果上添加数值。
|
|||
|
- `--cmap`:可视化结果使用的颜色映射图,即 `cmap`,默认为 `viridis`。
|
|||
|
- `--cfg-options`:对配置文件的修改,参考[学习配置文件](../user_guides/config.md)。
|
|||
|
|
|||
|
**使用示例**:
|
|||
|
|
|||
|
```shell
|
|||
|
python tools/analysis_tools/confusion_matrix.py \
|
|||
|
configs/resnet/resnet50_8xb16_cifar10.py \
|
|||
|
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth \
|
|||
|
--show
|
|||
|
```
|
|||
|
|
|||
|
**输出图片**:
|
|||
|
|
|||
|
<div align=center><img src="https://user-images.githubusercontent.com/26739999/210298124-49ae00f7-c8fd-488a-a4da-58c285e9c1f1.png" style=" width: auto; height: 40%; "></div>
|
|||
|
|
|||
|
## 基础用法
|
|||
|
|
|||
|
```python
|
|||
|
>>> import torch
|
|||
|
>>> from mmpretrain.evaluation import ConfusionMatrix
|
|||
|
>>> y_pred = [0, 1, 1, 3]
|
|||
|
>>> y_true = [0, 2, 1, 3]
|
|||
|
>>> ConfusionMatrix.calculate(y_pred, y_true, num_classes=4)
|
|||
|
tensor([[1, 0, 0, 0],
|
|||
|
[0, 1, 0, 0],
|
|||
|
[0, 1, 0, 0],
|
|||
|
[0, 0, 0, 1]])
|
|||
|
>>> # plot the confusion matrix
|
|||
|
>>> import matplotlib.pyplot as plt
|
|||
|
>>> y_score = torch.rand((1000, 10))
|
|||
|
>>> y_true = torch.randint(10, (1000, ))
|
|||
|
>>> matrix = ConfusionMatrix.calculate(y_score, y_true)
|
|||
|
>>> ConfusionMatrix().plot(matrix)
|
|||
|
>>> plt.show()
|
|||
|
```
|
|||
|
|
|||
|
## 结合评估器使用
|
|||
|
|
|||
|
```python
|
|||
|
>>> import torch
|
|||
|
>>> from mmpretrain.evaluation import ConfusionMatrix
|
|||
|
>>> from mmpretrain.structures import DataSample
|
|||
|
>>> from mmengine.evaluator import Evaluator
|
|||
|
>>> data_samples = [
|
|||
|
... DataSample().set_gt_label(i%5).set_pred_score(torch.rand(5))
|
|||
|
... for i in range(1000)
|
|||
|
... ]
|
|||
|
>>> evaluator = Evaluator(metrics=ConfusionMatrix())
|
|||
|
>>> evaluator.process(data_samples)
|
|||
|
>>> evaluator.evaluate(1000)
|
|||
|
{'confusion_matrix/result': tensor([[37, 37, 48, 43, 35],
|
|||
|
[35, 51, 32, 46, 36],
|
|||
|
[45, 28, 39, 42, 46],
|
|||
|
[42, 40, 40, 35, 43],
|
|||
|
[40, 39, 41, 37, 43]])}
|
|||
|
```
|