mmclassification/docs/zh_CN/useful_tools/confusion_matrix.md

84 lines
2.6 KiB
Markdown
Raw Normal View History

# 混淆矩阵
MMPretrain 提供 `tools/analysis_tools/confusion_matrix.py` 工具来分析预测结果的混淆矩阵。关于混淆矩阵的介绍,可参考[链接](https://zh.wikipedia.org/zh-cn/%E6%B7%B7%E6%B7%86%E7%9F%A9%E9%98%B5)。
## 命令行使用
**命令行**
```shell
python tools/analysis_tools/confusion_matrix.py \
${CONFIG_FILE} \
${CHECKPOINT} \
[--show] \
[--show-path] \
[--include-values] \
[--cmap ${CMAP}] \
[--cfg-options ${CFG-OPTIONS}]
```
**所有参数的说明**
- `config`:模型配置文件的路径。
- `checkpoint`:权重路径。
- `--show`:是否展示混淆矩阵的 matplotlib 可视化结果,默认不展示。
- `--show-path`:如果 `show` 为 True可视化结果的保存路径。
- `--include-values`:是否在可视化结果上添加数值。
- `--cmap`:可视化结果使用的颜色映射图,即 `cmap`,默认为 `viridis`
- `--cfg-options`:对配置文件的修改,参考[学习配置文件](../user_guides/config.md)。
**使用示例**
```shell
python tools/analysis_tools/confusion_matrix.py \
configs/resnet/resnet50_8xb16_cifar10.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_20210528-f54bfad9.pth \
--show
```
**输出图片**
<div align=center><img src="https://user-images.githubusercontent.com/26739999/210298124-49ae00f7-c8fd-488a-a4da-58c285e9c1f1.png" style=" width: auto; height: 40%; "></div>
## 基础用法
```python
>>> import torch
>>> from mmpretrain.evaluation import ConfusionMatrix
>>> y_pred = [0, 1, 1, 3]
>>> y_true = [0, 2, 1, 3]
>>> ConfusionMatrix.calculate(y_pred, y_true, num_classes=4)
tensor([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1]])
>>> # plot the confusion matrix
>>> import matplotlib.pyplot as plt
>>> y_score = torch.rand((1000, 10))
>>> y_true = torch.randint(10, (1000, ))
>>> matrix = ConfusionMatrix.calculate(y_score, y_true)
>>> ConfusionMatrix().plot(matrix)
>>> plt.show()
```
## 结合评估器使用
```python
>>> import torch
>>> from mmpretrain.evaluation import ConfusionMatrix
>>> from mmpretrain.structures import DataSample
>>> from mmengine.evaluator import Evaluator
>>> data_samples = [
... DataSample().set_gt_label(i%5).set_pred_score(torch.rand(5))
... for i in range(1000)
... ]
>>> evaluator = Evaluator(metrics=ConfusionMatrix())
>>> evaluator.process(data_samples)
>>> evaluator.evaluate(1000)
{'confusion_matrix/result': tensor([[37, 37, 48, 43, 35],
[35, 51, 32, 46, 36],
[45, 28, 39, 42, 46],
[42, 40, 40, 35, 43],
[40, 39, 41, 37, 43]])}
```