35 lines
820 B
Python
Raw Normal View History

# optimizer
optim_wrapper = dict(
optimizer=dict(
type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True))
# learning policy
2022-05-23 09:31:57 +00:00
param_scheduler = [
# warm up learning rate scheduler
dict(
type='LinearLR',
start_factor=0.01,
by_epoch=True,
begin=0,
end=5,
# update by iter
convert_to_iter_based=True),
# main learning rate scheduler
dict(
type='CosineAnnealingLR',
T_max=95,
by_epoch=True,
begin=5,
end=100,
)
2022-05-23 09:31:57 +00:00
]
2022-05-23 08:43:23 +00:00
2022-05-23 09:31:57 +00:00
# train, val, test setting
2022-06-27 10:00:52 +00:00
train_cfg = dict(by_epoch=True, max_epochs=100, val_interval=1)
val_cfg = dict()
2022-05-23 09:31:57 +00:00
test_cfg = dict()
2022-07-15 15:20:17 +08:00
# NOTE: `auto_scale_lr` is for automatically scaling LR
# based on the actual training batch size.
auto_scale_lr = dict(base_batch_size=64)