34 lines
1.2 KiB
Python
34 lines
1.2 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from mmcls.models.losses.utils import convert_to_one_hot
|
||
|
|
||
|
|
||
|
def ori_convert_to_one_hot(targets: torch.Tensor, classes) -> torch.Tensor:
|
||
|
assert (torch.max(targets).item() <
|
||
|
classes), 'Class Index must be less than number of classes'
|
||
|
one_hot_targets = torch.zeros((targets.shape[0], classes),
|
||
|
dtype=torch.long,
|
||
|
device=targets.device)
|
||
|
one_hot_targets.scatter_(1, targets.long(), 1)
|
||
|
return one_hot_targets
|
||
|
|
||
|
|
||
|
def test_convert_to_one_hot():
|
||
|
# label should smaller than classes
|
||
|
targets = torch.tensor([1, 2, 3, 8, 5])
|
||
|
classes = 5
|
||
|
with pytest.raises(AssertionError):
|
||
|
_ = convert_to_one_hot(targets, classes)
|
||
|
|
||
|
# test with original impl
|
||
|
classes = 10
|
||
|
targets = torch.randint(high=classes, size=(10, 1))
|
||
|
ori_one_hot_targets = torch.zeros((targets.shape[0], classes),
|
||
|
dtype=torch.long,
|
||
|
device=targets.device)
|
||
|
ori_one_hot_targets.scatter_(1, targets.long(), 1)
|
||
|
one_hot_targets = convert_to_one_hot(targets, classes)
|
||
|
assert torch.equal(ori_one_hot_targets, one_hot_targets)
|