mmclassification/tools/deployment/test.py

104 lines
3.6 KiB
Python
Raw Normal View History

import argparse
import warnings
import mmcv
import numpy as np
from mmcv import DictAction
from mmcv.parallel import MMDataParallel
from mmcls.apis import single_gpu_test
from mmcls.core.export import ONNXRuntimeClassifier
from mmcls.datasets import build_dataloader, build_dataset
def parse_args():
parser = argparse.ArgumentParser(
description='Test (and eval) an ONNX model using ONNXRuntime.')
parser.add_argument('config', help='model config file')
parser.add_argument('model', help='filename of the input ONNX model')
parser.add_argument(
'--out', type=str, help='output result file in pickle format')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file.')
parser.add_argument(
'--metrics',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., '
'"accuracy", "precision", "recall", "f1_score", "support" for single '
'label dataset, and "mAP", "CP", "CR", "CF1", "OP", "OR", "OF1" for '
'multi-label dataset')
parser.add_argument(
'--metric-options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be parsed as a dict metric_options for dataset.evaluate()'
' function.')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument(
'--show-dir', help='directory where painted images will be saved')
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
cfg = mmcv.Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# build dataset and dataloader
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=cfg.data.samples_per_gpu,
workers_per_gpu=cfg.data.workers_per_gpu,
shuffle=False,
round_up=False)
# build onnxruntime model and run inference.
model = ONNXRuntimeClassifier(
args.model, class_names=dataset.CLASSES, device_id=0)
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
if args.metrics:
results = dataset.evaluate(outputs, args.metrics, args.metric_options)
for k, v in results.items():
print(f'\n{k} : {v:.2f}')
else:
warnings.warn('Evaluation metrics are not specified.')
scores = np.vstack(outputs)
pred_score = np.max(scores, axis=1)
pred_label = np.argmax(scores, axis=1)
pred_class = [dataset.CLASSES[lb] for lb in pred_label]
results = {
'pred_score': pred_score,
'pred_label': pred_label,
'pred_class': pred_class
}
if not args.out:
print('\nthe predicted result for the first element is '
f'pred_score = {pred_score[0]:.2f}, '
f'pred_label = {pred_label[0]} '
f'and pred_class = {pred_class[0]}. '
'Specify --out to save all results to files.')
if args.out:
print(f'\nwriting results to {args.out}')
mmcv.dump(results, args.out)
if __name__ == '__main__':
main()