mmclassification/mmcls/models/utils/se_layer.py

32 lines
941 B
Python
Raw Normal View History

2020-06-17 14:20:20 +08:00
import torch.nn as nn
class SELayer(nn.Module):
"""Squeeze-and-Excitation Module.
Args:
2020-06-25 11:57:50 +08:00
channels (int): The input (and output) channels of the SE layer.
ratio (int): Squeeze ratio in SELayer, the intermediate channel will be
``int(channels/ratio)``. Default: 16.
2020-06-17 14:20:20 +08:00
"""
2020-06-25 11:57:50 +08:00
def __init__(self, channels, ratio=16):
2020-06-17 14:20:20 +08:00
super(SELayer, self).__init__()
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(
2020-06-25 11:57:50 +08:00
channels, int(channels / ratio), kernel_size=1, stride=1)
2020-06-17 14:20:20 +08:00
self.conv2 = nn.Conv2d(
2020-06-25 11:57:50 +08:00
int(channels / ratio), channels, kernel_size=1, stride=1)
2020-06-17 14:20:20 +08:00
self.relu = nn.ReLU(inplace=True)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.global_avgpool(x)
out = self.conv1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.sigmoid(out)
return x * out