2023-03-07 17:57:08 +08:00
|
|
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|
|
|
import argparse
|
|
|
|
import os.path as osp
|
|
|
|
import time
|
2023-03-09 11:36:54 +08:00
|
|
|
from collections import defaultdict
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import numpy as np
|
2023-03-09 11:36:54 +08:00
|
|
|
import rich.progress as progress
|
2023-03-07 17:57:08 +08:00
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from mmengine.config import Config, DictAction
|
2023-03-09 11:36:54 +08:00
|
|
|
from mmengine.device import get_device
|
2023-03-07 17:57:08 +08:00
|
|
|
from mmengine.logging import MMLogger
|
2023-03-09 11:36:54 +08:00
|
|
|
from mmengine.runner import Runner
|
2023-03-07 17:57:08 +08:00
|
|
|
from mmengine.utils import mkdir_or_exist
|
|
|
|
|
|
|
|
from mmpretrain.apis import get_model
|
2023-03-09 11:36:54 +08:00
|
|
|
from mmpretrain.registry import DATASETS
|
|
|
|
|
|
|
|
try:
|
|
|
|
from sklearn.manifold import TSNE
|
|
|
|
except ImportError as e:
|
|
|
|
raise ImportError('Please install `sklearn` to calculate '
|
|
|
|
'TSNE by `pip install scikit-learn`') from e
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser(description='t-SNE visualization')
|
|
|
|
parser.add_argument('config', help='tsne config file path')
|
|
|
|
parser.add_argument('--checkpoint', default=None, help='checkpoint file')
|
|
|
|
parser.add_argument('--work-dir', help='the dir to save logs and models')
|
2023-03-09 11:36:54 +08:00
|
|
|
parser.add_argument(
|
|
|
|
'--test-cfg',
|
|
|
|
help='tsne config file path to load config of test dataloader.')
|
2023-03-07 17:57:08 +08:00
|
|
|
parser.add_argument(
|
|
|
|
'--vis-stage',
|
|
|
|
choices=['backbone', 'neck', 'pre_logits'],
|
2023-03-09 11:36:54 +08:00
|
|
|
help='The visualization stage of the model')
|
|
|
|
parser.add_argument(
|
|
|
|
'--class-idx',
|
|
|
|
nargs='+',
|
|
|
|
type=int,
|
|
|
|
help='The categories used to calculate t-SNE.')
|
2023-03-07 17:57:08 +08:00
|
|
|
parser.add_argument(
|
|
|
|
'--max-num-class',
|
|
|
|
type=int,
|
|
|
|
default=20,
|
2023-03-09 11:36:54 +08:00
|
|
|
help='The first N categories to apply t-SNE algorithms. '
|
|
|
|
'Defaults to 20.')
|
2023-03-07 17:57:08 +08:00
|
|
|
parser.add_argument(
|
2023-03-09 11:36:54 +08:00
|
|
|
'--max-num-samples',
|
|
|
|
type=int,
|
|
|
|
default=100,
|
|
|
|
help='The maximum number of samples per category. '
|
|
|
|
'Higher number need longer time to calculate. Defaults to 100.')
|
2023-03-07 17:57:08 +08:00
|
|
|
parser.add_argument(
|
|
|
|
'--cfg-options',
|
|
|
|
nargs='+',
|
|
|
|
action=DictAction,
|
|
|
|
help='override some settings in the used config, the key-value pair '
|
|
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
|
|
'is allowed.')
|
2023-03-09 11:36:54 +08:00
|
|
|
parser.add_argument('--device', help='Device used for inference')
|
|
|
|
parser.add_argument(
|
|
|
|
'--legend',
|
|
|
|
action='store_true',
|
|
|
|
help='Show the legend of all categories.')
|
2023-03-07 17:57:08 +08:00
|
|
|
parser.add_argument(
|
2023-03-09 11:36:54 +08:00
|
|
|
'--show',
|
|
|
|
action='store_true',
|
|
|
|
help='Display the result in a graphical window.')
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
# t-SNE settings
|
|
|
|
parser.add_argument(
|
|
|
|
'--n-components', type=int, default=2, help='the dimension of results')
|
|
|
|
parser.add_argument(
|
|
|
|
'--perplexity',
|
|
|
|
type=float,
|
|
|
|
default=30.0,
|
|
|
|
help='The perplexity is related to the number of nearest neighbors'
|
|
|
|
'that is used in other manifold learning algorithms.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--early-exaggeration',
|
|
|
|
type=float,
|
|
|
|
default=12.0,
|
|
|
|
help='Controls how tight natural clusters in the original space are in'
|
|
|
|
'the embedded space and how much space will be between them.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--learning-rate',
|
|
|
|
type=float,
|
|
|
|
default=200.0,
|
|
|
|
help='The learning rate for t-SNE is usually in the range'
|
|
|
|
'[10.0, 1000.0]. If the learning rate is too high, the data may look'
|
|
|
|
'like a ball with any point approximately equidistant from its nearest'
|
|
|
|
'neighbours. If the learning rate is too low, most points may look'
|
|
|
|
'compressed in a dense cloud with few outliers.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--n-iter',
|
|
|
|
type=int,
|
|
|
|
default=1000,
|
|
|
|
help='Maximum number of iterations for the optimization. Should be at'
|
|
|
|
'least 250.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--n-iter-without-progress',
|
|
|
|
type=int,
|
|
|
|
default=300,
|
|
|
|
help='Maximum number of iterations without progress before we abort'
|
|
|
|
'the optimization.')
|
|
|
|
parser.add_argument(
|
|
|
|
'--init', type=str, default='random', help='The init method')
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
|
|
if args.cfg_options is not None:
|
|
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# work_dir is determined in this priority: CLI > segment in file > filename
|
|
|
|
if args.work_dir is not None:
|
|
|
|
# update configs according to CLI args if args.work_dir is not None
|
|
|
|
cfg.work_dir = args.work_dir
|
|
|
|
elif cfg.get('work_dir', None) is None:
|
|
|
|
# use config filename as default work_dir if cfg.work_dir is None
|
|
|
|
work_type = args.config.split('/')[1]
|
|
|
|
cfg.work_dir = osp.join('./work_dirs', work_type,
|
|
|
|
osp.splitext(osp.basename(args.config))[0])
|
|
|
|
|
|
|
|
# create work_dir
|
|
|
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
|
|
|
tsne_work_dir = osp.join(cfg.work_dir, f'tsne_{timestamp}/')
|
|
|
|
mkdir_or_exist(osp.abspath(tsne_work_dir))
|
|
|
|
|
|
|
|
# init the logger before other steps
|
|
|
|
log_file = osp.join(tsne_work_dir, 'tsne.log')
|
|
|
|
logger = MMLogger.get_instance(
|
|
|
|
'mmpretrain',
|
|
|
|
logger_name='mmpretrain',
|
|
|
|
log_file=log_file,
|
|
|
|
log_level=cfg.log_level)
|
|
|
|
|
|
|
|
# build the model from a config file and a checkpoint file
|
2023-03-09 11:36:54 +08:00
|
|
|
device = args.device or get_device()
|
|
|
|
model = get_model(cfg, args.checkpoint, device=device)
|
|
|
|
logger.info('Model loaded.')
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
# build the dataset
|
2023-03-09 11:36:54 +08:00
|
|
|
if args.test_cfg is not None:
|
|
|
|
dataloader_cfg = Config.fromfile(args.test_cfg).get('test_dataloader')
|
|
|
|
elif 'test_dataloader' not in cfg:
|
|
|
|
raise ValueError('No `test_dataloader` in the config, you can '
|
|
|
|
'specify another config file that includes test '
|
|
|
|
'dataloader settings by the `--test-cfg` option.')
|
|
|
|
else:
|
|
|
|
dataloader_cfg = cfg.get('test_dataloader')
|
|
|
|
|
|
|
|
dataset = DATASETS.build(dataloader_cfg.pop('dataset'))
|
|
|
|
classes = dataset.metainfo.get('classes')
|
|
|
|
|
|
|
|
if args.class_idx is None:
|
|
|
|
num_classes = args.max_num_class if classes is None else len(classes)
|
|
|
|
args.class_idx = list(range(num_classes))[:args.max_num_class]
|
|
|
|
|
|
|
|
if classes is not None:
|
|
|
|
classes = [classes[idx] for idx in args.class_idx]
|
|
|
|
else:
|
|
|
|
classes = args.class_idx
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
# compress dataset, select that the label is less then max_num_class
|
|
|
|
subset_idx_list = []
|
2023-03-09 11:36:54 +08:00
|
|
|
counter = defaultdict(int)
|
2023-03-07 17:57:08 +08:00
|
|
|
for i in range(len(dataset)):
|
2023-03-09 11:36:54 +08:00
|
|
|
gt_label = dataset.get_data_info(i)['gt_label']
|
|
|
|
if (gt_label in args.class_idx
|
|
|
|
and counter[gt_label] < args.max_num_samples):
|
2023-03-07 17:57:08 +08:00
|
|
|
subset_idx_list.append(i)
|
2023-03-09 11:36:54 +08:00
|
|
|
counter[gt_label] += 1
|
2023-03-07 17:57:08 +08:00
|
|
|
dataset.get_subset_(subset_idx_list)
|
|
|
|
logger.info(f'Apply t-SNE to visualize {len(subset_idx_list)} samples.')
|
|
|
|
|
2023-03-09 11:36:54 +08:00
|
|
|
dataloader_cfg.dataset = dataset
|
|
|
|
dataloader_cfg.setdefault('collate_fn', dict(type='default_collate'))
|
|
|
|
dataloader = Runner.build_dataloader(dataloader_cfg)
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
results = dict()
|
|
|
|
features = []
|
|
|
|
labels = []
|
2023-03-09 11:36:54 +08:00
|
|
|
for data in progress.track(dataloader, description='Calculating...'):
|
2023-03-07 17:57:08 +08:00
|
|
|
with torch.no_grad():
|
|
|
|
# preprocess data
|
|
|
|
data = model.data_preprocessor(data)
|
|
|
|
batch_inputs, batch_data_samples = \
|
|
|
|
data['inputs'], data['data_samples']
|
2023-03-09 11:36:54 +08:00
|
|
|
batch_labels = torch.cat([i.gt_label for i in batch_data_samples])
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
# extract backbone features
|
2023-03-09 11:36:54 +08:00
|
|
|
extract_args = {}
|
|
|
|
if args.vis_stage:
|
|
|
|
extract_args['stage'] = args.vis_stage
|
|
|
|
batch_features = model.extract_feat(batch_inputs, **extract_args)
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
# post process
|
2023-03-09 11:36:54 +08:00
|
|
|
if batch_features[0].ndim == 4:
|
|
|
|
# For (N, C, H, W) feature
|
|
|
|
batch_features = [
|
|
|
|
F.adaptive_avg_pool2d(inputs, 1).squeeze()
|
|
|
|
for inputs in batch_features
|
|
|
|
]
|
2023-06-01 10:04:06 +08:00
|
|
|
elif batch_features[0].ndim == 3:
|
|
|
|
# For (N, L, C) feature
|
|
|
|
batch_features = [inputs.mean(1) for inputs in batch_features]
|
2023-03-07 17:57:08 +08:00
|
|
|
|
|
|
|
# save batch features
|
|
|
|
features.append(batch_features)
|
|
|
|
labels.extend(batch_labels.cpu().numpy())
|
|
|
|
|
|
|
|
for i in range(len(features[0])):
|
|
|
|
key = 'feat_' + str(model.backbone.out_indices[i])
|
|
|
|
results[key] = np.concatenate(
|
|
|
|
[batch[i].cpu().numpy() for batch in features], axis=0)
|
|
|
|
|
|
|
|
# save features
|
|
|
|
for key, val in results.items():
|
|
|
|
output_file = f'{tsne_work_dir}{key}.npy'
|
|
|
|
np.save(output_file, val)
|
|
|
|
|
|
|
|
# build t-SNE model
|
|
|
|
tsne_model = TSNE(
|
|
|
|
n_components=args.n_components,
|
|
|
|
perplexity=args.perplexity,
|
|
|
|
early_exaggeration=args.early_exaggeration,
|
|
|
|
learning_rate=args.learning_rate,
|
|
|
|
n_iter=args.n_iter,
|
|
|
|
n_iter_without_progress=args.n_iter_without_progress,
|
|
|
|
init=args.init)
|
|
|
|
|
|
|
|
# run and get results
|
|
|
|
logger.info('Running t-SNE.')
|
|
|
|
for key, val in results.items():
|
|
|
|
result = tsne_model.fit_transform(val)
|
|
|
|
res_min, res_max = result.min(0), result.max(0)
|
|
|
|
res_norm = (result - res_min) / (res_max - res_min)
|
2023-03-09 11:36:54 +08:00
|
|
|
_, ax = plt.subplots(figsize=(10, 10))
|
|
|
|
scatter = ax.scatter(
|
2023-03-07 17:57:08 +08:00
|
|
|
res_norm[:, 0],
|
|
|
|
res_norm[:, 1],
|
|
|
|
alpha=1.0,
|
|
|
|
s=15,
|
|
|
|
c=labels,
|
|
|
|
cmap='tab20')
|
2023-03-09 11:36:54 +08:00
|
|
|
if args.legend:
|
|
|
|
legend = ax.legend(scatter.legend_elements()[0], classes)
|
|
|
|
ax.add_artist(legend)
|
2023-03-07 17:57:08 +08:00
|
|
|
plt.savefig(f'{tsne_work_dir}{key}.png')
|
2023-03-09 11:36:54 +08:00
|
|
|
if args.show:
|
|
|
|
plt.show()
|
2023-03-07 17:57:08 +08:00
|
|
|
logger.info(f'Save features and results to {tsne_work_dir}')
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|