104 lines
3.4 KiB
Python
104 lines
3.4 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from mmcv.cnn.utils.weight_init import trunc_normal_
|
||
|
|
||
|
from ..builder import HEADS
|
||
|
from .cls_head import ClsHead
|
||
|
|
||
|
|
||
|
@HEADS.register_module()
|
||
|
class ConformerHead(ClsHead):
|
||
|
"""Linear classifier head.
|
||
|
|
||
|
Args:
|
||
|
num_classes (int): Number of categories excluding the background
|
||
|
category.
|
||
|
in_channels (int): Number of channels in the input feature map.
|
||
|
init_cfg (dict | optional): The extra init config of layers.
|
||
|
Defaults to use dict(type='Normal', layer='Linear', std=0.01).
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
num_classes,
|
||
|
in_channels, # [conv_dim, trans_dim]
|
||
|
init_cfg=dict(type='Normal', layer='Linear', std=0.01),
|
||
|
*args,
|
||
|
**kwargs):
|
||
|
super(ConformerHead, self).__init__(init_cfg=None, *args, **kwargs)
|
||
|
|
||
|
self.in_channels = in_channels
|
||
|
self.num_classes = num_classes
|
||
|
self.init_cfg = init_cfg
|
||
|
|
||
|
if self.num_classes <= 0:
|
||
|
raise ValueError(
|
||
|
f'num_classes={num_classes} must be a positive integer')
|
||
|
|
||
|
self.conv_cls_head = nn.Linear(self.in_channels[0], num_classes)
|
||
|
self.trans_cls_head = nn.Linear(self.in_channels[1], num_classes)
|
||
|
|
||
|
def _init_weights(self, m):
|
||
|
if isinstance(m, nn.Linear):
|
||
|
trunc_normal_(m.weight, std=.02)
|
||
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
|
||
|
def init_weights(self):
|
||
|
super(ConformerHead, self).init_weights()
|
||
|
|
||
|
if (isinstance(self.init_cfg, dict)
|
||
|
and self.init_cfg['type'] == 'Pretrained'):
|
||
|
# Suppress default init if use pretrained model.
|
||
|
return
|
||
|
else:
|
||
|
self.apply(self._init_weights)
|
||
|
|
||
|
def simple_test(self, x):
|
||
|
"""Test without augmentation."""
|
||
|
if isinstance(x, tuple):
|
||
|
x = x[-1]
|
||
|
assert isinstance(x,
|
||
|
list) # There are two outputs in the Conformer model
|
||
|
|
||
|
conv_cls_score = self.conv_cls_head(x[0])
|
||
|
tran_cls_score = self.trans_cls_head(x[1])
|
||
|
|
||
|
cls_score = conv_cls_score + tran_cls_score
|
||
|
|
||
|
pred = F.softmax(cls_score, dim=1) if cls_score is not None else None
|
||
|
|
||
|
return self.post_process(pred)
|
||
|
|
||
|
def forward_train(self, x, gt_label):
|
||
|
if isinstance(x, tuple):
|
||
|
x = x[-1]
|
||
|
assert isinstance(x, list) and len(x) == 2, \
|
||
|
'There should be two outputs in the Conformer model'
|
||
|
|
||
|
conv_cls_score = self.conv_cls_head(x[0])
|
||
|
tran_cls_score = self.trans_cls_head(x[1])
|
||
|
|
||
|
losses = self.loss([conv_cls_score, tran_cls_score], gt_label)
|
||
|
return losses
|
||
|
|
||
|
def loss(self, cls_score, gt_label):
|
||
|
num_samples = len(cls_score[0])
|
||
|
losses = dict()
|
||
|
# compute loss
|
||
|
loss = sum([
|
||
|
self.compute_loss(score, gt_label, avg_factor=num_samples) /
|
||
|
len(cls_score) for score in cls_score
|
||
|
])
|
||
|
if self.cal_acc:
|
||
|
# compute accuracy
|
||
|
acc = self.compute_accuracy(cls_score[0] + cls_score[1], gt_label)
|
||
|
assert len(acc) == len(self.topk)
|
||
|
losses['accuracy'] = {
|
||
|
f'top-{k}': a
|
||
|
for k, a in zip(self.topk, acc)
|
||
|
}
|
||
|
losses['loss'] = loss
|
||
|
return losses
|