support to test mmdet inference with mmcls backbone (#343)
* support to test mmdet inference with mmcls backbone * update config * update * add mmdet dependency in testspull/347/head
parent
2ccc55ce4f
commit
06f415c28a
|
@ -2,6 +2,7 @@ codecov
|
|||
flake8
|
||||
interrogate
|
||||
isort==4.3.21
|
||||
mmdet
|
||||
pytest
|
||||
xdoctest >= 0.10.0
|
||||
yapf
|
||||
|
|
|
@ -14,6 +14,6 @@ line_length = 79
|
|||
multi_line_output = 0
|
||||
known_standard_library = pkg_resources,setuptools
|
||||
known_first_party = mmcls
|
||||
known_third_party = PIL,cv2,matplotlib,mmcv,numpy,onnxruntime,pytest,seaborn,torch,torchvision,ts
|
||||
known_third_party = PIL,cv2,matplotlib,mmcv,mmdet,numpy,onnxruntime,pytest,seaborn,torch,torchvision,ts
|
||||
no_lines_before = STDLIB,LOCALFOLDER
|
||||
default_section = THIRDPARTY
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
# model settings
|
||||
model = dict(
|
||||
type='RetinaNet',
|
||||
backbone=dict(
|
||||
type='ResNet',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(0, 1, 2, 3),
|
||||
frozen_stages=1,
|
||||
norm_cfg=dict(type='BN', requires_grad=True),
|
||||
norm_eval=True,
|
||||
style='pytorch',
|
||||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
||||
neck=dict(
|
||||
type='FPN',
|
||||
in_channels=[256, 512, 1024, 2048],
|
||||
out_channels=256,
|
||||
start_level=1,
|
||||
add_extra_convs='on_input',
|
||||
num_outs=5),
|
||||
bbox_head=dict(
|
||||
type='RetinaHead',
|
||||
num_classes=80,
|
||||
in_channels=256,
|
||||
stacked_convs=4,
|
||||
feat_channels=256,
|
||||
anchor_generator=dict(
|
||||
type='AnchorGenerator',
|
||||
octave_base_scale=4,
|
||||
scales_per_octave=3,
|
||||
ratios=[0.5, 1.0, 2.0],
|
||||
strides=[8, 16, 32, 64, 128]),
|
||||
bbox_coder=dict(
|
||||
type='DeltaXYWHBBoxCoder',
|
||||
target_means=[.0, .0, .0, .0],
|
||||
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
||||
loss_cls=dict(
|
||||
type='FocalLoss',
|
||||
use_sigmoid=True,
|
||||
gamma=2.0,
|
||||
alpha=0.25,
|
||||
loss_weight=1.0),
|
||||
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(
|
||||
assigner=dict(
|
||||
type='MaxIoUAssigner',
|
||||
pos_iou_thr=0.5,
|
||||
neg_iou_thr=0.4,
|
||||
min_pos_iou=0,
|
||||
ignore_iof_thr=-1),
|
||||
allowed_border=-1,
|
||||
pos_weight=-1,
|
||||
debug=False),
|
||||
test_cfg=dict(
|
||||
nms_pre=1000,
|
||||
min_bbox_size=0,
|
||||
score_thr=0.05,
|
||||
nms=dict(type='nms', iou_threshold=0.5),
|
||||
max_per_img=100))
|
|
@ -0,0 +1,60 @@
|
|||
from mmdet.models import build_detector
|
||||
|
||||
from mmcls.models import (MobileNetV2, MobileNetV3, RegNet, ResNeSt, ResNet,
|
||||
ResNeXt, SEResNet, SEResNeXt, SwinTransformer)
|
||||
|
||||
backbone_configs = dict(
|
||||
mobilenetv2=dict(
|
||||
backbone=dict(
|
||||
type='mmcls.MobileNetV2',
|
||||
widen_factor=1.0,
|
||||
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
|
||||
out_indices=(4, 7))),
|
||||
mobilenetv3=dict(
|
||||
backbone=dict(
|
||||
type='mmcls.MobileNetV3',
|
||||
norm_cfg=dict(type='GN', num_groups=2, requires_grad=True),
|
||||
out_indices=range(7, 12))),
|
||||
regnet=dict(backbone=dict(type='mmcls.RegNet', arch='regnetx_400mf')),
|
||||
resnext=dict(
|
||||
backbone=dict(
|
||||
type='mmcls.ResNeXt', depth=50, groups=32, width_per_group=4)),
|
||||
resnet=dict(backbone=dict(type='mmcls.ResNet', depth=50)),
|
||||
seresnet=dict(backbone=dict(type='mmcls.SEResNet', depth=50)),
|
||||
seresnext=dict(
|
||||
backbone=dict(
|
||||
type='mmcls.SEResNeXt', depth=50, groups=32, width_per_group=4)),
|
||||
resnest=dict(
|
||||
backbone=dict(
|
||||
type='mmcls.ResNeSt',
|
||||
depth=50,
|
||||
radix=2,
|
||||
reduction_factor=4,
|
||||
out_indices=(0, 1, 2, 3))),
|
||||
swin=dict(
|
||||
backbone=dict(
|
||||
type='mmcls.SwinTransformer', arch='small', drop_path_rate=0.2)))
|
||||
|
||||
module_mapping = {
|
||||
'mobilenetv2': MobileNetV2,
|
||||
'mobilenetv3': MobileNetV3,
|
||||
'regnet': RegNet,
|
||||
'resnext': ResNeXt,
|
||||
'resnet': ResNet,
|
||||
'seresnext': SEResNeXt,
|
||||
'seresnet': SEResNet,
|
||||
'resnest': ResNeSt,
|
||||
'swin': SwinTransformer
|
||||
}
|
||||
|
||||
|
||||
def test_mmdet_inference():
|
||||
from mmcv import Config
|
||||
config_path = './tests/data/retinanet.py'
|
||||
config = Config.fromfile(config_path)
|
||||
|
||||
for module_name, backbone_config in backbone_configs.items():
|
||||
config.model.backbone = backbone_config['backbone']
|
||||
model = build_detector(config.model)
|
||||
module = module_mapping[module_name]
|
||||
assert isinstance(model.backbone, module)
|
Loading…
Reference in New Issue