pull/2/head
lixiaojie 2020-06-05 15:52:22 +08:00
parent fa49911440
commit 0def3a56b6
1 changed files with 1 additions and 20 deletions

View File

@ -97,7 +97,7 @@ def test_mobilenetv2_backbone():
for param in layer.parameters():
assert param.requires_grad is False
# Test MobileNetv2 with first stage frozen
# Test MobileNetv2 with bn frozen
model = MobileNetv2(bn_frozen=True)
model.init_weights()
model.train()
@ -163,25 +163,6 @@ def test_mobilenetv2_backbone():
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 with BatchNorm forward
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
for m in model.modules():
if is_norm(m):
assert isinstance(m, _BatchNorm)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 32, 28, 28])
assert feat[3].shape == torch.Size([1, 64, 14, 14])
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])
# Test MobileNetv2 with layers 1, 3, 5 out forward
model = MobileNetv2(
widen_factor=1.0, activation=nn.ReLU6, out_indices=(0, 2, 4))