fix & add test
parent
ba391c029a
commit
2aaff0e4f2
|
@ -0,0 +1,5 @@
|
|||
from .mobilenet_v2 import MobileNetv2
|
||||
|
||||
__all__ = [
|
||||
'MobileNetv2',
|
||||
]
|
|
@ -0,0 +1,27 @@
|
|||
import logging
|
||||
import torch.nn as nn
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from mmcv.runner import load_checkpoint
|
||||
|
||||
|
||||
class BaseBackbone(nn.Module, metaclass=ABCMeta):
|
||||
|
||||
def __init__(self):
|
||||
super(BaseBackbone, self).__init__()
|
||||
|
||||
def init_weights(self, pretrained=None):
|
||||
if isinstance(pretrained, str):
|
||||
logger = logging.getLogger()
|
||||
load_checkpoint(self, pretrained, strict=False, logger=logger)
|
||||
elif pretrained is None:
|
||||
pass
|
||||
else:
|
||||
raise TypeError('pretrained must be a str or None')
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x):
|
||||
pass
|
||||
|
||||
def train(self, mode=True):
|
||||
super(BaseBackbone, self).train(mode)
|
|
@ -3,7 +3,7 @@ import logging
|
|||
import torch.nn as nn
|
||||
import torch.utils.checkpoint as cp
|
||||
|
||||
from ..runner import load_checkpoint
|
||||
# from ..runner import load_checkpoint
|
||||
from .base_backbone import BaseBackbone
|
||||
from .weight_init import constant_init, kaiming_init
|
||||
|
||||
|
@ -20,11 +20,11 @@ def conv3x3(in_planes, out_planes, stride=1, dilation=1):
|
|||
bias=False)
|
||||
|
||||
|
||||
def conv_1x1_bn(inp, oup, act=nn.ReLU6):
|
||||
def conv_1x1_bn(inp, oup, activation=nn.ReLU6):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(oup),
|
||||
act(inplace=True)
|
||||
activation(inplace=True)
|
||||
)
|
||||
|
||||
|
||||
|
@ -38,11 +38,6 @@ class ConvBNReLU(nn.Sequential):
|
|||
activation=nn.ReLU6):
|
||||
padding = (kernel_size - 1) // 2
|
||||
|
||||
try:
|
||||
self.activation = activation(inplace=True)
|
||||
except RuntimeWarning('inplace is not allowed to use'):
|
||||
self.activation = activation()
|
||||
|
||||
super(ConvBNReLU, self).__init__(
|
||||
nn.Conv2d(in_planes,
|
||||
out_planes,
|
||||
|
@ -52,7 +47,7 @@ class ConvBNReLU(nn.Sequential):
|
|||
groups=groups,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(out_planes),
|
||||
self.activation
|
||||
activation(inplace=True)
|
||||
)
|
||||
|
||||
|
||||
|
@ -122,20 +117,21 @@ def make_inverted_res_layer(block,
|
|||
num_blocks,
|
||||
stride=1,
|
||||
expand_ratio=6,
|
||||
activation_type=nn.ReLU6,
|
||||
activation=nn.ReLU6,
|
||||
with_cp=False):
|
||||
layers = []
|
||||
for i in range(num_blocks):
|
||||
if i == 0:
|
||||
layers.append(block(inplanes, planes, stride,
|
||||
expand_ratio=expand_ratio,
|
||||
activation=activation_type,
|
||||
activation=activation,
|
||||
with_cp=with_cp))
|
||||
else:
|
||||
layers.append(block(inplanes, planes, 1,
|
||||
expand_ratio=expand_ratio,
|
||||
activation=activation_type,
|
||||
activation=activation,
|
||||
with_cp=with_cp))
|
||||
inplanes = planes
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
|
@ -165,23 +161,20 @@ class MobileNetv2(BaseBackbone):
|
|||
with_cp=False):
|
||||
super(MobileNetv2, self).__init__()
|
||||
block = InvertedResidual
|
||||
|
||||
inverted_residual_setting = {
|
||||
# lager_index: [expand_ratio, out_channel, n, stide]
|
||||
0: [1, 16, 1, 1],
|
||||
1: [6, 24, 2, 2],
|
||||
2: [6, 32, 3, 2],
|
||||
3: [6, 64, 4, 2],
|
||||
4: [6, 96, 3, 1],
|
||||
5: [6, 160, 3, 2],
|
||||
6: [6, 320, 1, 1]
|
||||
}
|
||||
# expand_ratio, out_channel, n, stride
|
||||
inverted_residual_setting = [
|
||||
[1, 16, 1, 1],
|
||||
[6, 24, 2, 2],
|
||||
[6, 32, 3, 2],
|
||||
[6, 64, 4, 2],
|
||||
[6, 96, 3, 1],
|
||||
[6, 160, 3, 2],
|
||||
[6, 320, 1, 1]
|
||||
]
|
||||
self.widen_factor = widen_factor
|
||||
self.activation_type = activation
|
||||
try:
|
||||
self.activation = activation(inplace=True)
|
||||
except RuntimeWarning('inplace is not allowed to use'):
|
||||
self.activation = activation()
|
||||
if isinstance(activation, str):
|
||||
activation = eval(activation)
|
||||
self.activation = activation(inplace=True)
|
||||
|
||||
self.out_indices = out_indices
|
||||
self.frozen_stages = frozen_stages
|
||||
|
@ -191,11 +184,13 @@ class MobileNetv2(BaseBackbone):
|
|||
|
||||
self.inplanes = 32
|
||||
self.inplanes = _make_divisible(self.inplanes * widen_factor, 8)
|
||||
self.conv1 = conv3x3(3, self.inplanes, stride=2)
|
||||
|
||||
self.conv1 = conv3x3(3, self.inplanes, stride=2)
|
||||
self.bn1 = nn.BatchNorm2d(self.inplanes)
|
||||
self.inverted_res_layers = []
|
||||
for i, later_cfg in enumerate(inverted_residual_setting):
|
||||
t, c, n, s = later_cfg
|
||||
|
||||
for i, layer_cfg in enumerate(inverted_residual_setting):
|
||||
t, c, n, s = layer_cfg
|
||||
planes = _make_divisible(c * widen_factor, 8)
|
||||
inverted_res_layer = make_inverted_res_layer(
|
||||
block,
|
||||
|
@ -204,7 +199,7 @@ class MobileNetv2(BaseBackbone):
|
|||
num_blocks=n,
|
||||
stride=s,
|
||||
expand_ratio=t,
|
||||
activation_type=self.activation_type,
|
||||
activation=activation,
|
||||
with_cp=self.with_cp)
|
||||
self.inplanes = planes
|
||||
layer_name = 'layer{}'.format(i + 1)
|
||||
|
@ -214,7 +209,9 @@ class MobileNetv2(BaseBackbone):
|
|||
self.out_channel = 1280
|
||||
self.out_channel = int(self.out_channel * widen_factor) \
|
||||
if widen_factor > 1.0 else self.out_channel
|
||||
self.conv1_bn = conv_1x1_bn(self.inplanes, self.out_channel)
|
||||
|
||||
self.conv_last = nn.Conv2d(self.inplanes, self.out_channel, 1, 1, 0, bias=False)
|
||||
self.bn_last = nn.BatchNorm2d(self.out_channel)
|
||||
|
||||
self.feat_dim = self.out_channel
|
||||
|
||||
|
@ -233,7 +230,6 @@ class MobileNetv2(BaseBackbone):
|
|||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.activation(x)
|
||||
|
||||
outs = []
|
||||
|
@ -243,7 +239,10 @@ class MobileNetv2(BaseBackbone):
|
|||
if i in self.out_indices:
|
||||
outs.append(x)
|
||||
|
||||
x = self.conv1_bn(x)
|
||||
x = self.conv_last(x)
|
||||
x = self.bn_last(x)
|
||||
x = self.activation(x)
|
||||
|
||||
outs.append(x)
|
||||
|
||||
if len(outs) == 1:
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
# Copyright (c) Open-MMLab. All rights reserved.
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def constant_init(module, val, bias=0):
|
||||
if hasattr(module, 'weight') and module.weight is not None:
|
||||
nn.init.constant_(module.weight, val)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
nn.init.constant_(module.bias, bias)
|
||||
|
||||
|
||||
def xavier_init(module, gain=1, bias=0, distribution='normal'):
|
||||
assert distribution in ['uniform', 'normal']
|
||||
if distribution == 'uniform':
|
||||
nn.init.xavier_uniform_(module.weight, gain=gain)
|
||||
else:
|
||||
nn.init.xavier_normal_(module.weight, gain=gain)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
nn.init.constant_(module.bias, bias)
|
||||
|
||||
|
||||
def normal_init(module, mean=0, std=1, bias=0):
|
||||
nn.init.normal_(module.weight, mean, std)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
nn.init.constant_(module.bias, bias)
|
||||
|
||||
|
||||
def uniform_init(module, a=0, b=1, bias=0):
|
||||
nn.init.uniform_(module.weight, a, b)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
nn.init.constant_(module.bias, bias)
|
||||
|
||||
|
||||
def kaiming_init(module,
|
||||
a=0,
|
||||
mode='fan_out',
|
||||
nonlinearity='relu',
|
||||
bias=0,
|
||||
distribution='normal'):
|
||||
assert distribution in ['uniform', 'normal']
|
||||
if distribution == 'uniform':
|
||||
nn.init.kaiming_uniform_(
|
||||
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
|
||||
else:
|
||||
nn.init.kaiming_normal_(
|
||||
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
nn.init.constant_(module.bias, bias)
|
||||
|
||||
|
||||
def caffe2_xavier_init(module, bias=0):
|
||||
# `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch
|
||||
# Acknowledgment to FAIR's internal code
|
||||
kaiming_init(
|
||||
module,
|
||||
a=1,
|
||||
mode='fan_in',
|
||||
nonlinearity='leaky_relu',
|
||||
distribution='uniform')
|
||||
|
||||
|
||||
def bias_init_with_prob(prior_prob):
|
||||
""" initialize conv/fc bias value according to giving probablity"""
|
||||
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
|
||||
return bias_init
|
|
@ -0,0 +1,25 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.modules import AvgPool2d, GroupNorm
|
||||
from torch.nn.modules.batchnorm import _BatchNorm
|
||||
|
||||
from mmcls.models.backbones import MobileNetv2
|
||||
|
||||
|
||||
def test_mobilenetv2_backbone():
|
||||
# Test MobileNetv2 with widen_factor 1.0, activation nn.ReLU6
|
||||
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
|
||||
model.init_weights()
|
||||
model.train()
|
||||
|
||||
imgs = torch.randn(1, 3, 224, 224)
|
||||
feat = model(imgs)
|
||||
assert len(feat) == 8
|
||||
assert feat[0].shape == torch.Size([1, 16, 112, 112])
|
||||
assert feat[1].shape == torch.Size([1, 24, 56, 56])
|
||||
assert feat[2].shape == torch.Size([1, 32, 28, 28])
|
||||
assert feat[3].shape == torch.Size([1, 64, 14, 14])
|
||||
assert feat[4].shape == torch.Size([1, 96, 14, 14])
|
||||
assert feat[5].shape == torch.Size([1, 160, 7, 7])
|
||||
assert feat[6].shape == torch.Size([1, 320, 7, 7])
|
Loading…
Reference in New Issue