fix & add test

pull/2/head
lixiaojie 2020-06-03 15:51:17 +08:00
parent ba391c029a
commit 2aaff0e4f2
5 changed files with 157 additions and 35 deletions

View File

@ -0,0 +1,5 @@
from .mobilenet_v2 import MobileNetv2
__all__ = [
'MobileNetv2',
]

View File

@ -0,0 +1,27 @@
import logging
import torch.nn as nn
from abc import ABCMeta, abstractmethod
from mmcv.runner import load_checkpoint
class BaseBackbone(nn.Module, metaclass=ABCMeta):
def __init__(self):
super(BaseBackbone, self).__init__()
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
pass
else:
raise TypeError('pretrained must be a str or None')
@abstractmethod
def forward(self, x):
pass
def train(self, mode=True):
super(BaseBackbone, self).train(mode)

View File

@ -3,7 +3,7 @@ import logging
import torch.nn as nn
import torch.utils.checkpoint as cp
from ..runner import load_checkpoint
# from ..runner import load_checkpoint
from .base_backbone import BaseBackbone
from .weight_init import constant_init, kaiming_init
@ -20,11 +20,11 @@ def conv3x3(in_planes, out_planes, stride=1, dilation=1):
bias=False)
def conv_1x1_bn(inp, oup, act=nn.ReLU6):
def conv_1x1_bn(inp, oup, activation=nn.ReLU6):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
act(inplace=True)
activation(inplace=True)
)
@ -38,11 +38,6 @@ class ConvBNReLU(nn.Sequential):
activation=nn.ReLU6):
padding = (kernel_size - 1) // 2
try:
self.activation = activation(inplace=True)
except RuntimeWarning('inplace is not allowed to use'):
self.activation = activation()
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes,
out_planes,
@ -52,7 +47,7 @@ class ConvBNReLU(nn.Sequential):
groups=groups,
bias=False),
nn.BatchNorm2d(out_planes),
self.activation
activation(inplace=True)
)
@ -122,20 +117,21 @@ def make_inverted_res_layer(block,
num_blocks,
stride=1,
expand_ratio=6,
activation_type=nn.ReLU6,
activation=nn.ReLU6,
with_cp=False):
layers = []
for i in range(num_blocks):
if i == 0:
layers.append(block(inplanes, planes, stride,
expand_ratio=expand_ratio,
activation=activation_type,
activation=activation,
with_cp=with_cp))
else:
layers.append(block(inplanes, planes, 1,
expand_ratio=expand_ratio,
activation=activation_type,
activation=activation,
with_cp=with_cp))
inplanes = planes
return nn.Sequential(*layers)
@ -165,23 +161,20 @@ class MobileNetv2(BaseBackbone):
with_cp=False):
super(MobileNetv2, self).__init__()
block = InvertedResidual
inverted_residual_setting = {
# lager_index: [expand_ratio, out_channel, n, stide]
0: [1, 16, 1, 1],
1: [6, 24, 2, 2],
2: [6, 32, 3, 2],
3: [6, 64, 4, 2],
4: [6, 96, 3, 1],
5: [6, 160, 3, 2],
6: [6, 320, 1, 1]
}
# expand_ratio, out_channel, n, stride
inverted_residual_setting = [
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1]
]
self.widen_factor = widen_factor
self.activation_type = activation
try:
self.activation = activation(inplace=True)
except RuntimeWarning('inplace is not allowed to use'):
self.activation = activation()
if isinstance(activation, str):
activation = eval(activation)
self.activation = activation(inplace=True)
self.out_indices = out_indices
self.frozen_stages = frozen_stages
@ -191,11 +184,13 @@ class MobileNetv2(BaseBackbone):
self.inplanes = 32
self.inplanes = _make_divisible(self.inplanes * widen_factor, 8)
self.conv1 = conv3x3(3, self.inplanes, stride=2)
self.conv1 = conv3x3(3, self.inplanes, stride=2)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.inverted_res_layers = []
for i, later_cfg in enumerate(inverted_residual_setting):
t, c, n, s = later_cfg
for i, layer_cfg in enumerate(inverted_residual_setting):
t, c, n, s = layer_cfg
planes = _make_divisible(c * widen_factor, 8)
inverted_res_layer = make_inverted_res_layer(
block,
@ -204,7 +199,7 @@ class MobileNetv2(BaseBackbone):
num_blocks=n,
stride=s,
expand_ratio=t,
activation_type=self.activation_type,
activation=activation,
with_cp=self.with_cp)
self.inplanes = planes
layer_name = 'layer{}'.format(i + 1)
@ -214,7 +209,9 @@ class MobileNetv2(BaseBackbone):
self.out_channel = 1280
self.out_channel = int(self.out_channel * widen_factor) \
if widen_factor > 1.0 else self.out_channel
self.conv1_bn = conv_1x1_bn(self.inplanes, self.out_channel)
self.conv_last = nn.Conv2d(self.inplanes, self.out_channel, 1, 1, 0, bias=False)
self.bn_last = nn.BatchNorm2d(self.out_channel)
self.feat_dim = self.out_channel
@ -233,7 +230,6 @@ class MobileNetv2(BaseBackbone):
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.activation(x)
outs = []
@ -243,7 +239,10 @@ class MobileNetv2(BaseBackbone):
if i in self.out_indices:
outs.append(x)
x = self.conv1_bn(x)
x = self.conv_last(x)
x = self.bn_last(x)
x = self.activation(x)
outs.append(x)
if len(outs) == 1:

View File

@ -0,0 +1,66 @@
# Copyright (c) Open-MMLab. All rights reserved.
import numpy as np
import torch.nn as nn
def constant_init(module, val, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.constant_(module.weight, val)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def xavier_init(module, gain=1, bias=0, distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.xavier_uniform_(module.weight, gain=gain)
else:
nn.init.xavier_normal_(module.weight, gain=gain)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def normal_init(module, mean=0, std=1, bias=0):
nn.init.normal_(module.weight, mean, std)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def uniform_init(module, a=0, b=1, bias=0):
nn.init.uniform_(module.weight, a, b)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def kaiming_init(module,
a=0,
mode='fan_out',
nonlinearity='relu',
bias=0,
distribution='normal'):
assert distribution in ['uniform', 'normal']
if distribution == 'uniform':
nn.init.kaiming_uniform_(
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
else:
nn.init.kaiming_normal_(
module.weight, a=a, mode=mode, nonlinearity=nonlinearity)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
def caffe2_xavier_init(module, bias=0):
# `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch
# Acknowledgment to FAIR's internal code
kaiming_init(
module,
a=1,
mode='fan_in',
nonlinearity='leaky_relu',
distribution='uniform')
def bias_init_with_prob(prior_prob):
""" initialize conv/fc bias value according to giving probablity"""
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
return bias_init

View File

@ -0,0 +1,25 @@
import pytest
import torch
import torch.nn as nn
from torch.nn.modules import AvgPool2d, GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm
from mmcls.models.backbones import MobileNetv2
def test_mobilenetv2_backbone():
# Test MobileNetv2 with widen_factor 1.0, activation nn.ReLU6
model = MobileNetv2(widen_factor=1.0, activation=nn.ReLU6)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model(imgs)
assert len(feat) == 8
assert feat[0].shape == torch.Size([1, 16, 112, 112])
assert feat[1].shape == torch.Size([1, 24, 56, 56])
assert feat[2].shape == torch.Size([1, 32, 28, 28])
assert feat[3].shape == torch.Size([1, 64, 14, 14])
assert feat[4].shape == torch.Size([1, 96, 14, 14])
assert feat[5].shape == torch.Size([1, 160, 7, 7])
assert feat[6].shape == torch.Size([1, 320, 7, 7])