Bump version to v1.0.0rc8 (#1583)
* Bump version to v1.0.0rc8 * Apply suggestions from code review Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com> * Update README.md --------- Co-authored-by: Yixiao Fang <36138628+fangyixiao18@users.noreply.github.com>pull/1655/head v1.0.0rc8
parent
be389eb846
commit
4dd8a86145
18
README.md
18
README.md
|
@ -86,6 +86,12 @@ https://github.com/open-mmlab/mmpretrain/assets/26739999/e4dcd3a2-f895-4d1b-a351
|
|||
|
||||
## What's new
|
||||
|
||||
🌟 v1.0.0rc8 was released in 22/05/2023
|
||||
|
||||
- Support multiple **multi-modal** algorithms and inferencers. You can explore these features by the [gradio demo](https://github.com/open-mmlab/mmpretrain/tree/main/projects/gradio_demo)!
|
||||
- Add EVA-02, Dino-V2, ViT-SAM and GLIP backbones.
|
||||
- Register torchvision transforms into MMPretrain, you can now easily integrate torchvision's data augmentations in MMPretrain. See [the doc](https://mmpretrain.readthedocs.io/en/latest/api/data_process.html#torchvision-transforms)
|
||||
|
||||
🌟 v1.0.0rc7 was released in 07/04/2023
|
||||
|
||||
- Integrated Self-supervised learning algorithms from **MMSelfSup**, such as **MAE**, **BEiT**, etc.
|
||||
|
@ -160,6 +166,9 @@ Results and models are available in the [model zoo](https://mmpretrain.readthedo
|
|||
<td>
|
||||
<b>Self-supervised Learning</b>
|
||||
</td>
|
||||
<td>
|
||||
<b>Multi-Modality Algorithms</b>
|
||||
</td>
|
||||
<td>
|
||||
<b>Others</b>
|
||||
</td>
|
||||
|
@ -239,6 +248,15 @@ Results and models are available in the [model zoo](https://mmpretrain.readthedo
|
|||
<li><a href="configs/mixmim">MixMIM (arXiv'2022)</a></li>
|
||||
</ul>
|
||||
</td>
|
||||
<td>
|
||||
<ul>
|
||||
<li><a href="configs/blip">BLIP (arxiv'2022)</a></li>
|
||||
<li><a href="configs/blip2">BLIP-2 (arxiv'2023)</a></li>
|
||||
<li><a href="configs/ofa">OFA (CoRR'2022)</a></li>
|
||||
<li><a href="configs/flamingo">Flamingo (NeurIPS'2022)</a></li>
|
||||
<li><a href="configs/chinese_clip">Chinese CLIP (arxiv'2022)</a></li>
|
||||
</ul>
|
||||
</td>
|
||||
<td>
|
||||
Image Retrieval Task:
|
||||
<ul>
|
||||
|
|
|
@ -84,6 +84,12 @@ https://github.com/open-mmlab/mmpretrain/assets/26739999/e4dcd3a2-f895-4d1b-a351
|
|||
|
||||
## 更新日志
|
||||
|
||||
🌟 2023/5/22 发布了 v1.0.0rc8 版本
|
||||
|
||||
- 支持多种多模态算法和推理器。您可以通过 [gradio demo](https://github.com/open-mmlab/mmpretrain/tree/main/projects/gradio_demo) 探索这些功能!
|
||||
- 新增 EVA-02,Dino-V2,ViT-SAM 和 GLIP 主干网络。
|
||||
- 将 torchvision 变换注册到 MMPretrain,现在您可以轻松地将 torchvision 的数据增强集成到 MMPretrain 中。
|
||||
|
||||
🌟 2023/4/7 发布了 v1.0.0rc7 版本
|
||||
|
||||
- 整和来自 MMSelfSup 的自监督学习算法,例如 `MAE`, `BEiT` 等
|
||||
|
@ -157,6 +163,9 @@ mim install -e ".[multimodal]"
|
|||
<td>
|
||||
<b>自监督学习</b>
|
||||
</td>
|
||||
<td>
|
||||
<b>多模态算法</b>
|
||||
</td>
|
||||
<td>
|
||||
<b>其它</b>
|
||||
</td>
|
||||
|
@ -235,6 +244,15 @@ mim install -e ".[multimodal]"
|
|||
<li><a href="configs/mixmim">MixMIM (arXiv'2022)</a></li>
|
||||
</ul>
|
||||
</td>
|
||||
<td>
|
||||
<ul>
|
||||
<li><a href="configs/blip">BLIP (arxiv'2022)</a></li>
|
||||
<li><a href="configs/blip2">BLIP-2 (arxiv'2023)</a></li>
|
||||
<li><a href="configs/ofa">OFA (CoRR'2022)</a></li>
|
||||
<li><a href="configs/flamingo">Flamingo (NeurIPS'2022)</a></li>
|
||||
<li><a href="configs/chinese_clip">Chinese CLIP (arxiv'2022)</a></li>
|
||||
</ul>
|
||||
</td>
|
||||
<td>
|
||||
图像检索任务:
|
||||
<ul>
|
||||
|
|
|
@ -3,7 +3,7 @@ ARG CUDA="11.3"
|
|||
ARG CUDNN="8"
|
||||
FROM pytorch/torchserve:latest-gpu
|
||||
|
||||
ARG MMPRE="1.0.0rc5"
|
||||
ARG MMPRE="1.0.0rc8"
|
||||
|
||||
ENV PYTHONUNBUFFERED TRUE
|
||||
|
||||
|
|
|
@ -63,7 +63,7 @@ pip install -U openmim && mim install -e .
|
|||
Just install with mim.
|
||||
|
||||
```shell
|
||||
pip install -U openmim && mim install "mmpretrain>=1.0.0rc7"
|
||||
pip install -U openmim && mim install "mmpretrain>=1.0.0rc8"
|
||||
```
|
||||
|
||||
```{note}
|
||||
|
@ -80,7 +80,7 @@ can add `[multimodal]` during the installation. For example:
|
|||
mim install -e ".[multimodal]"
|
||||
|
||||
# Install as a Python package
|
||||
mim install "mmpretrain[multimodal]>=1.0.0rc7"
|
||||
mim install "mmpretrain[multimodal]>=1.0.0rc8"
|
||||
```
|
||||
|
||||
## Verify the installation
|
||||
|
|
|
@ -1,5 +1,52 @@
|
|||
# Changelog (MMPreTrain)
|
||||
|
||||
## v1.0.0rc8(22/05/2023)
|
||||
|
||||
### Highlights
|
||||
|
||||
- Support multiple multi-modal algorithms and inferencers. You can explore these features by the [gradio demo](https://github.com/open-mmlab/mmpretrain/tree/main/projects/gradio_demo)!
|
||||
- Add EVA-02, Dino-V2, ViT-SAM and GLIP backbones.
|
||||
- Register torchvision transforms into MMPretrain, you can now easily integrate torchvision's data augmentations in MMPretrain.
|
||||
|
||||
### New Features
|
||||
|
||||
- Support Chinese CLIP. ([#1576](https://github.com/open-mmlab/mmpretrain/pull/1576))
|
||||
- Add ScienceQA Metrics ([#1577](https://github.com/open-mmlab/mmpretrain/pull/1577))
|
||||
- Support multiple multi-modal algorithms and inferencers. ([#1561](https://github.com/open-mmlab/mmpretrain/pull/1561))
|
||||
- add eva02 backbone ([#1450](https://github.com/open-mmlab/mmpretrain/pull/1450))
|
||||
- Support dinov2 backbone ([#1522](https://github.com/open-mmlab/mmpretrain/pull/1522))
|
||||
- Support some downstream classification datasets. ([#1467](https://github.com/open-mmlab/mmpretrain/pull/1467))
|
||||
- Support GLIP ([#1308](https://github.com/open-mmlab/mmpretrain/pull/1308))
|
||||
- Register torchvision transforms into mmpretrain ([#1265](https://github.com/open-mmlab/mmpretrain/pull/1265))
|
||||
- Add ViT of SAM ([#1476](https://github.com/open-mmlab/mmpretrain/pull/1476))
|
||||
|
||||
### Improvements
|
||||
|
||||
- [Refactor] Support to freeze channel reduction and add layer decay function ([#1490](https://github.com/open-mmlab/mmpretrain/pull/1490))
|
||||
- [Refactor] Support resizing pos_embed while loading ckpt and format output ([#1488](https://github.com/open-mmlab/mmpretrain/pull/1488))
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
- Fix scienceqa ([#1581](https://github.com/open-mmlab/mmpretrain/pull/1581))
|
||||
- Fix config of beit ([#1528](https://github.com/open-mmlab/mmpretrain/pull/1528))
|
||||
- Incorrect stage freeze on RIFormer Model ([#1573](https://github.com/open-mmlab/mmpretrain/pull/1573))
|
||||
- Fix ddp bugs caused by `out_type`. ([#1570](https://github.com/open-mmlab/mmpretrain/pull/1570))
|
||||
- Fix multi-task-head loss potential bug ([#1530](https://github.com/open-mmlab/mmpretrain/pull/1530))
|
||||
- Support bce loss without batch augmentations ([#1525](https://github.com/open-mmlab/mmpretrain/pull/1525))
|
||||
- Fix clip generator init bug ([#1518](https://github.com/open-mmlab/mmpretrain/pull/1518))
|
||||
- Fix the bug in binary cross entropy loss ([#1499](https://github.com/open-mmlab/mmpretrain/pull/1499))
|
||||
|
||||
### Docs Update
|
||||
|
||||
- Update PoolFormer citation to CVPR version ([#1505](https://github.com/open-mmlab/mmpretrain/pull/1505))
|
||||
- Refine Inference Doc ([#1489](https://github.com/open-mmlab/mmpretrain/pull/1489))
|
||||
- Add doc for usage of confusion matrix ([#1513](https://github.com/open-mmlab/mmpretrain/pull/1513))
|
||||
- Update MMagic link ([#1517](https://github.com/open-mmlab/mmpretrain/pull/1517))
|
||||
- Fix example_project README ([#1575](https://github.com/open-mmlab/mmpretrain/pull/1575))
|
||||
- Add NPU support page ([#1481](https://github.com/open-mmlab/mmpretrain/pull/1481))
|
||||
- train cfg: Removed old description ([#1473](https://github.com/open-mmlab/mmpretrain/pull/1473))
|
||||
- Fix typo in MultiLabelDataset docstring ([#1483](https://github.com/open-mmlab/mmpretrain/pull/1483))
|
||||
|
||||
## v1.0.0rc7(07/04/2023)
|
||||
|
||||
### Highlights
|
||||
|
|
|
@ -16,7 +16,8 @@ and make sure you fill in all required information in the template.
|
|||
|
||||
| MMPretrain version | MMEngine version | MMCV version |
|
||||
| :----------------: | :---------------: | :--------------: |
|
||||
| 1.0.0rc7 (main) | mmengine >= 0.5.0 | mmcv >= 2.0.0rc4 |
|
||||
| 1.0.0rc8 (main) | mmengine >= 0.7.1 | mmcv >= 2.0.0rc4 |
|
||||
| 1.0.0rc7 | mmengine >= 0.5.0 | mmcv >= 2.0.0rc4 |
|
||||
|
||||
```{note}
|
||||
Since the `dev` branch is under frequent development, the MMEngine and MMCV
|
||||
|
|
|
@ -67,7 +67,7 @@ pip install -U openmim && mim install -e .
|
|||
直接使用 mim 安装即可。
|
||||
|
||||
```shell
|
||||
pip install -U openmim && mim install "mmpretrain>=1.0.0rc7"
|
||||
pip install -U openmim && mim install "mmpretrain>=1.0.0rc8"
|
||||
```
|
||||
|
||||
```{note}
|
||||
|
@ -83,7 +83,7 @@ MMPretrain 中的多模态模型需要额外的依赖项,要安装这些依赖
|
|||
mim install -e ".[multimodal]"
|
||||
|
||||
# 作为 Python 包安装
|
||||
mim install "mmpretrain[multimodal]>=1.0.0rc7"
|
||||
mim install "mmpretrain[multimodal]>=1.0.0rc8"
|
||||
```
|
||||
|
||||
## 验证安装
|
||||
|
|
|
@ -13,7 +13,8 @@
|
|||
|
||||
| MMPretrain 版本 | MMEngine 版本 | MMCV 版本 |
|
||||
| :-------------: | :---------------: | :--------------: |
|
||||
| 1.0.0rc7 (main) | mmengine >= 0.5.0 | mmcv >= 2.0.0rc4 |
|
||||
| 1.0.0rc8 (main) | mmengine >= 0.7.1 | mmcv >= 2.0.0rc4 |
|
||||
| 1.0.0rc7 | mmengine >= 0.5.0 | mmcv >= 2.0.0rc4 |
|
||||
|
||||
```{note}
|
||||
由于 `dev` 分支处于频繁开发中,MMEngine 和 MMCV 版本依赖可能不准确。如果您在使用
|
||||
|
|
|
@ -10,7 +10,7 @@ mmcv_minimum_version = '2.0.0rc4'
|
|||
mmcv_maximum_version = '2.1.0'
|
||||
mmcv_version = digit_version(mmcv.__version__)
|
||||
|
||||
mmengine_minimum_version = '0.5.0'
|
||||
mmengine_minimum_version = '0.7.1'
|
||||
mmengine_maximum_version = '1.0.0'
|
||||
mmengine_version = digit_version(mmengine.__version__)
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved
|
||||
|
||||
__version__ = '1.0.0rc7'
|
||||
__version__ = '1.0.0rc8'
|
||||
|
||||
|
||||
def parse_version_info(version_str):
|
||||
|
|
Loading…
Reference in New Issue