From 72b0da8bd7a7e3fb15adeb5e22fc083a5e89c921 Mon Sep 17 00:00:00 2001 From: Ezra-Yu <1105212286@qq.com> Date: Wed, 8 Dec 2021 18:59:21 +0800 Subject: [PATCH] [Docs] Update mmcv, torch, cuda version in Dockerfile and docs (#594) --- docker/Dockerfile | 3 ++- docs/install.md | 6 +++--- docs_zh-CN/install.md | 6 +++--- 3 files changed, 8 insertions(+), 7 deletions(-) diff --git a/docker/Dockerfile b/docker/Dockerfile index 6d05ad69d..fc36510f8 100644 --- a/docker/Dockerfile +++ b/docker/Dockerfile @@ -13,7 +13,8 @@ RUN apt-get update && apt-get install -y ffmpeg libsm6 libxext6 git ninja-build && rm -rf /var/lib/apt/lists/* # Install MMCV -RUN pip install mmcv-full==1.3.16 -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.1/index.html +RUN pip install openmim +RUN mim install mmcv-full # Install MMClassification RUN conda clean --all diff --git a/docs/install.md b/docs/install.md index b16946a17..d4dc72afa 100644 --- a/docs/install.md +++ b/docs/install.md @@ -118,8 +118,8 @@ number). We provide a [Dockerfile](https://github.com/open-mmlab/mmclassification/blob/master/docker/Dockerfile) to build an image. ```shell -# build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7. -docker build -f ./docker/Dockerfile --rm -t mmcls:torch1.6.0-cuda10.1-cudnn7 . +# build an image with PyTorch 1.8.1, CUDA 10.2, CUDNN 7 and MMCV-full latest version released. +docker build -f ./docker/Dockerfile --rm -t mmcls:latest . ``` ```{important} @@ -129,7 +129,7 @@ Make sure you've installed the [nvidia-container-toolkit](https://docs.nvidia.co Run a container built from mmcls image with command: ```shell -docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmclassification/data mmcls:torch1.6.0-cuda10.1-cudnn7 /bin/bash +docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmclassification/data mmcls:latest /bin/bash ``` ## Using multiple MMClassification versions diff --git a/docs_zh-CN/install.md b/docs_zh-CN/install.md index b206976d0..36b1f802c 100644 --- a/docs_zh-CN/install.md +++ b/docs_zh-CN/install.md @@ -110,8 +110,8 @@ pip install -e . # 或者 "python setup.py develop" MMClassification 提供 [Dockerfile](https://github.com/open-mmlab/mmclassification/blob/master/docker/Dockerfile) ,可以通过以下命令创建 docker 镜像。 ```shell -# 创建基于 PyTorch 1.6.0, CUDA 10.1, CUDNN 7 的镜像。 -docker build -f ./docker/Dockerfile --rm -t mmcls:torch1.6.0-cuda10.1-cudnn7 . +# 创建基于 PyTorch 1.8.1, CUDA 10.2, CUDNN 7 以及最近版本的 MMCV-full 的镜像 。 +docker build -f ./docker/Dockerfile --rm -t mmcls:latest . ``` ```{important} @@ -121,7 +121,7 @@ docker build -f ./docker/Dockerfile --rm -t mmcls:torch1.6.0-cuda10.1-cudnn7 . 运行一个基于上述镜像的容器: ```shell -docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmclassification/data mmcls:torch1.6.0-cuda10.1-cudnn7 /bin/bash +docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmclassification/data mmcls:latest /bin/bash ``` ## 在多个 MMClassification 版本下进行开发